浏览全部资源
扫码关注微信
1. 陆军工程大学指挥控制工程学院,江苏 南京 210007
2. 解放军第61所,北京 100000
3. 海军指挥学院,江苏 南京210007
[ "何明(1978-),男,新疆石河子人,博士,陆军工程大学教授,主要研究方向为传感器网络。" ]
[ "仇功达(1992-),男,浙江余姚人,陆军工程大学硕士生,主要研究方向为机器学习。" ]
[ "周波(1982-),男,江苏淮安人,陆军工程大学博士生,主要研究方向智能信息处理。" ]
[ "柳强(1983-),男,辽宁锦州人,博士,海军指挥学院讲师,主要研究方向指挥控制系统工程。" ]
[ "曹玉婷(1989-),女,江苏南京人,陆军工程大学硕士生,主要研究方向为智能信息处理。" ]
网络出版日期:2017-12,
纸质出版日期:2017-12-25
移动端阅览
何明, 仇功达, 周波, 等. 基于改进密度聚类与模式信息挖掘的异常轨迹识别方法[J]. 通信学报, 2017,38(12):21-33.
Ming HE, Gong-da QIU, Bo ZHOU, et al. Abnormal trajectory detection method based on enhanced density clustering and abnormal information mining[J]. Journal on communications, 2017, 38(12): 21-33.
何明, 仇功达, 周波, 等. 基于改进密度聚类与模式信息挖掘的异常轨迹识别方法[J]. 通信学报, 2017,38(12):21-33. DOI: 10.11959/j.issn.1000-436x.2017287.
Ming HE, Gong-da QIU, Bo ZHOU, et al. Abnormal trajectory detection method based on enhanced density clustering and abnormal information mining[J]. Journal on communications, 2017, 38(12): 21-33. DOI: 10.11959/j.issn.1000-436x.2017287.
针对社会安全事件中异常行为信息识别挖掘难等问题,提出一种基于改进密度聚类与模式信息挖掘的异常轨迹识别方法。首先,针对采样问题,结合Hausdorff距离思想重新定义一种改进型DTW距离,用于描述轨迹具体行为,而MBR距离下的延伸定义,则用于描述轨迹覆盖区域热度。其次,在CFSFDP算法的密度关联与决策模型下,基于支持向量机回归(SVR,support vector regression)提出了特定支持向量机回归(SSVR,specific support vector regression),利用针对性改良下的回归差异非线性识别类中心,实现类的智能识别。最后,通过2种密度下的类识别,实现更多异常模式信息的挖掘与3种异常轨迹识别。结合上海市与北京市出租车轨迹集进行了仿真实验与数据分析,验证了算法在轨迹聚类异常识别方面的有效性。与传统方法相比,类发现能力提高了10%,异常轨迹信息得以区别与丰富。
Aiming at problems of low accuracy in the recognition and difficulty in enriching the information of abnormal behavior in the social security incidents,an abnormal trajectory detection method based on enhanced density clustering and abnormal information mining was proposed.Firstly,combined with Hausdorff distance,an enhanced DTW distance aiming at the problem of sampling to describe the behavior in detail was proposed.And based on the MBR distance, some definitions to describe the geographical distribution of trajectory were proposed.Secondly,with the density-distance decision model of CFSFDP algorithm,intelligent recognition of cluster was realized by using the difference of SSVR which was proposed based on SVR.Finally,based on the analysis of distribution under the two kinds of density,more abnormal information could be mined,three kinds of abnormal trajectories would be recognized.And the simulation results on trajectory data of Shanghai and Beijing verify that the algorithm is objective and efficient.Comparing to existing method,accuracy in the clustering is promoted by 10%,and the abnormal trajectories are sorted, abnormal information is enriched.
ZHENG Y . Trajectory data mining:an overview [J ] . ACM Transactions on Intelligent Systems and Technology , 2015 , 6 ( 3 ).
毛嘉莉 , 金澈清 , 章志刚 , 等 . 轨迹大数据异常检测:研究进展及系统框架 [J ] . 软件学报 , 2017 , 28 ( 1 ): 17 - 34 .
MAO J L , JIN C Q , ZHANG Z G , et al . Anomaly detection for trajectory big data:advancements and framework [J ] . Journal of Software , 2017 , 28 ( 1 ): 17 - 34 .
ZHU J , JIANG W , LIU A , et al . Time-dependent popular routes based trajectory outlier detection [C ] // WISE . 2015 : 16 - 30 .
CHAWLA S , ZHENG Y , HU J . Inferring the root cause in road traffic anomalies [C ] // IEEE International Conference on Data Mining . 2012 : 141 - 150 .
BIRANT D , KUT A . ST-DBSCAN:an algorithm for clustering spatial-temporal data [J ] . Data&Knowledge Engineering , 2007 , 60 ( 1 ): 208 - 221 .
TOOHEY K , DUCKHAM M . Trajectory similarity measures [J ] . Sigspatial Special , 2015 , 7 ( 1 ): 43 - 50 .
魏龙翔 , 何小海 , 滕奇志 , 等 . 结合Hausdorff距离和最长公共子序列的轨迹分类 [J ] . 电子与信息学报 , 2013 , 35 ( 4 ): 784 - 790 .
WEI L X , HE X H , TENG Q Z , et al . Trajectory classification based on Hausdorff distance and longest common subsequence [J ] . Journal of Electronics and Information Technology , 2013 , 35 ( 4 ): 784 - 790 .
YUAN G , SUN P , ZHAO J , et al . A review of moving object trajectory clustering algorithms [J ] . Artificial Intelligence Review , 2016 : 1 - 22 .
CHEN L , ÖZSU M , ORIA V . Robust and fast similarity search for moving object trajectories [C ] // The 2005ACMSIGMOD International Conference on Management of Data . 2005 : 491 - 502
CHEN L , NG R T . On the marriage of Lp-norms and edit distance [C ] // VLDB . 2004 : 792 - 803 .
YUAN G , XIA S , ZHANG L , et al . An efficient trajectory-clustering algorithm based on an index tree [J ] . Transactions of the Institute of Measurement&Control , 2012 , 34 ( 7 ): 850 - 861 .
NANNI M , PEDRESCHI D . Time-focused clustering of trajectories of moving objects [J ] . Journal of Intelligent Information Systems , 2006 , 27 ( 3 ): 267 - 289 .
RODRIGUEZ A , LAIO A . Machine learning clustering by fast search and find of density peaks [J ] . Science , 2014 , 344 ( 6191 ): 1492 - 1496 .
SHANG F , JIAO L C , SHI J , et al . Fast density-weighted low-rank approximation spectral clustering [J ] . Data Mining & Knowledge Discovery , 2011 , 23 ( 2 ): 345 - 378 .
WANG J , WU J , WANG J , et al . Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers [J ] . Soft Computing , 2016 , 20 ( 4 ): 1621 - 1633 .
WEI L X , HE X H , TENG Q Z , et al . Trajectory classification based on Hausdorff distance and longest common subsequence [J ] . J Electron Inf Technol , 2013 , 35 ( 4 ): 784 - 790
KHOSHAEIN V . Trajectory clustering using a variation of Fréchet distance [D ] . Ottawa,Canada:University of Ottawa , 2014 .
JEUNG H , YIUM L , JENSEN C S . Trajectory pattern mining [M ] // Computing with Spatial Trajectories . Springer , 2011 : 143 - 177 .
郭虎升 , 王文剑 . 动态粒度支持向量回归机 [J ] . 软件学报 , 2013 ( 11 ): 2535 - 2547 .
GUO H S , WANG W J . Dynamical granular support vector regression machine [J ] . Journal of Software , 2013 ( 11 ): 2535 - 2547 .
0
浏览量
1438
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构