浏览全部资源
扫码关注微信
浙江工业大学计算机学院,浙江 杭州 310023
[ "陈波(1971-),男,浙江慈溪人,浙江工业大学副教授,主要研究方向为无线和移动安全。" ]
[ "潘永涛(1991-),男,浙江绍兴人,浙江工业大学硕士生,主要研究方向为网络安全、大数据。" ]
[ "陈铁明(1978-),男,浙江诸暨人,浙江工业大学教授、博士生导师,主要研究方向为网络空间安全。" ]
网络出版日期:2017-11,
纸质出版日期:2017-11-25
移动端阅览
陈波, 潘永涛, 陈铁明. 基于多层SimHash的Android恶意应用程序检测方法[J]. 通信学报, 2017,38(Z2):30-36.
Bo CHEN, Yong-tao PAN, Tie-ming CHEN. Android malware detection method based on SimHash[J]. Journal on communications, 2017, 38(Z2): 30-36.
陈波, 潘永涛, 陈铁明. 基于多层SimHash的Android恶意应用程序检测方法[J]. 通信学报, 2017,38(Z2):30-36. DOI: 10.11959/j.issn.1000-436x.2017271.
Bo CHEN, Yong-tao PAN, Tie-ming CHEN. Android malware detection method based on SimHash[J]. Journal on communications, 2017, 38(Z2): 30-36. DOI: 10.11959/j.issn.1000-436x.2017271.
提出一个基于多层SimHash的相似度检测方法,通过对APK文件进行分析,最终从5个方面提取分析内容来表征 APK,同时在每一层上使用改进的 SimHash 方法进行相似度检测分析。通过从 APK 文件中提取的AndroidManifest.xml 文件、从 dex 反编译得出的 Smali 代码累加和、Smali 文件指令提取、Java 代码集合、Java指令集提取5个层面进行分析。同时通过学习Voted Perceptron投票算法,将其应用到检测过程中,采用信任值权重的方法,为每一层赋予一个可信值,并在最后得出结果时将每一层结果结合权重分析,实验分析结果表明该方法具有更好的检测效果。
A new similarity detection scheme based on hierarchical SimHash algorithm was proposed.The scheme extractd contents from different aspects to represent the APK file
then used the improved SimHash to respectively represent the file.The scheme analyzed the APK file by extracting the AndroidManifest.xml file in it
the sum of the Smali code from the decompilation of dex file
instructions extracted in Smali files
Java code set
and instructions extracted in Java code files.Through the study of Voted Perceptron voting algorithm
the scheme used trust weight method
by valuating a trust weight in every layer
then combined all the result with weight in every layer as a resule of scheme
the result can be more reasonable and more convincing.
YAN Q , LI Y , LI T , et al . Insights into malware detection and prevention on mobile phones [C ] // Security Technology - International Conference,Sectech 2009,Held As . DBLP , 2009 : 242 - 249 .
CHANDRAMOHAN M , TAN H B K . Detection of mobile malware in the wild [J ] . Computer , 2012 , 45 ( 9 ): 65 - 71 .
SOOD S . Probabilistic SimHash Matching [J ] . 2011 .
UDDIN M S , ROY C K , SCHNEIDER K A , et al . On the effectiveness of SimHash for detecting near-miss clones in large scale software systems [C ] // Working Conference on Reverse Engineering . IEEE , 2011 : 13 - 22 .
余意 , 张玉柱 , 胡自健 . 基于SimHash算法的大规模文档去重技术研究 [J ] . 信息通信 , 2015 ( 2 ): 28 - 29 .
BUYRUKBILEN S , BAKIRAS S . Secure similar document detection with SimHash [M ] // Secure Data Management . 2014 : 61 - 75 .
MANKU G S , JAIN A , SARMA A D . Detecting near-duplicates for web crawling [C ] // International Conference on World Wide Web . ACM , 2007 : 141 - 150 .
周龙泉 , 卫文学 . 基于主成分分析与 SimHash 的入侵检测方法 [J ] . 计算机与数字工程 , 2015 ( 7 ): 1291 - 1294 .
ZHOU L Q , WEI W X . Intrusion detectin method based on principal component analysis and SimHash [J ] . Computer and Digital Engineering , 2015 ( 7 ): 1291 - 1294 .
FREUND Y , SCHAPIRE R E . large margin classification using the perceptron algorithm [J ] . Machine Learning , 1999 , 37 ( 3 ): 277 - 296 .
UDDIN M S , ROY C K , SCHNEIDER K A , et al . On the effectiveness of SimHash for detecting near-miss clones in large scale software systems [C ] // Working Conference on Reverse Engineering . IEEE , 2011 : 13 - 22 .
0
浏览量
947
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构