浏览全部资源
扫码关注微信
1. 大连理工大学软件学院,辽宁 大连 116620
2. 华南农业大学自然资源与环境学院,广东 广州 510642
[ "周光海(1995-),男,贵州织金人,大连理工大学硕士生,主要研究方向为多模态学习、图像标注。" ]
[ "宁兆龙(1986-),男,辽宁沈阳人,博士,大连理工大学讲师、硕士生导师,主要研究方向为网络优化、物联网、社交网络。" ]
[ "陈志奎(1968-),男,辽宁大连人,博士,大连理工大学教授、博士生导师,主要研究方向为大数据计算。" ]
[ "钟华(1992-),男,山西忻州人,大连理工大学硕士生,主要研究方向为多模态学习、跨模态检索、图像标注。" ]
[ "胡月明(1964-),男,广东广州人,博士,华南农业大学教授,博士生导师,主要研究方向为地理信息系统、农业物联网、土地资源。" ]
网络出版日期:2017-11,
纸质出版日期:2017-11-25
移动端阅览
周光海, 宁兆龙, 陈志奎, 等. 基于核偏最小二乘法的物联网无线传感网络故障分析与研究[J]. 通信学报, 2017,38(Z2):94-98.
Guang-hai ZHOU, Zhao-long NING, Zhi-kui CHEN, et al. Fault analysis and research of wireless sensor network based on kernel partial least squares[J]. Journal on communications, 2017, 38(Z2): 94-98.
周光海, 宁兆龙, 陈志奎, 等. 基于核偏最小二乘法的物联网无线传感网络故障分析与研究[J]. 通信学报, 2017,38(Z2):94-98. DOI: 10.11959/j.issn.1000-436x.2017265.
Guang-hai ZHOU, Zhao-long NING, Zhi-kui CHEN, et al. Fault analysis and research of wireless sensor network based on kernel partial least squares[J]. Journal on communications, 2017, 38(Z2): 94-98. DOI: 10.11959/j.issn.1000-436x.2017265.
随着智能化、网络化传感器技术的日益成熟,无线传感网络在人类生活以及商业等领域有着广泛的应用,无线传感器网络节点通常只携带有限的资源,容易出现因资源不足而导致的故障,对WSN节点进行准确、及时的故障诊断,能够保障获得信息可靠性,从而提高 WSN 可维护性并且延长 WSN 的使用寿命。针对该问题,提出一种使用核偏最小二乘法来预测故障原因的方法,该方法克服了传统线性回归方法的缺陷,在高维的非线性空间对数据进行分析,同时,该方法也吸收了典型相关分析和主成分分析方法的特点,为分析提供了更加深入、丰富的内容,实验结果表明,提出的方法能够有效预测到故障原因。
With the development of intelligent and networked sensor technology
wireless sensor networks were widely used in human life and commercial fields
because wireless sensor network nodes usually only carry limited resources
it is prone to failures due to insufficient resources
the accurate and timely fault diagnosis of WSN nodes can ensure the reliability of information
thus improving the maintainability of WSN and prolonging the service life of WSN.A method of using kernel partial least squares has been proposed to predict the fault reasons
the method overcomes the defects of traditional linear regression method and the nonlinear high dimensional space for data analysis.Through many experiments
the method can absorb the characteristics of canonical correlation analysis and principal component analysis method
provide a more thorough and rich content analysi
that the reason of the fault can be predicted effectively.
刘敏钰 , 吴泳 , 伍卫国 . 无线传感网络 (WSN) 研究 [J ] . 微电子学与计算机 , 2005 , 22 ( 7 ): 58 - 61 .
LIU M Y , WU Y , WU W G . Wireless sensor network [J ] . Microelec-tronics and Computer , 2005 , 22 ( 7 ): 58 - 61 .
ZHANG Q C , ZHU C S , YANG L T , et al . An incremental CFS algorithm for clustering large data in industrial internet of things [J ] . IEEE Transactions on Industrial Information . 2017 , 13 ( 3 ): 1193 - 1201 .
刘凯 . 无线传感器网络节点故障诊断算法研究 [J ] . 江南大学 , 2011 : 1 - 2 .
LIU K . The research on node fault diagnosis algorithm of wireless sensor network [J ] . Jiangnan University , 2011 : 1 - 2 .
HARRISON D C , SEAH W K G , RAYUDU R . Rare event detection and propagation in wireless sensor networks [J ] . ACM Computing Surveys (CSUR) , 2016 , 48 ( 4 ):58.
LIU Y , DONG M , OTA K , et al . ActiveTrust:secure and trustable routing in wireless sensor networks [J ] . IEEE Transactions on Information Forensics and Security , 2016 , 11 ( 9 ): 2013 - 2027 .
ZHANG Q C , CHEN Z K , YANG L T . A node scheduling model based on markov chain prediction for big data,international [J ] . Journal of Communication Systems , 2015 , 28 ( 9 ): 1610 - 1619 .
余成波 , 李芮 , 何强 , 等 . 基于粒子群算法及高斯分布的 WSN 节点故障诊断 [J ] . 振动.测试与诊断 , 2013 ( 1 ): 149 - 152 .
YU C B , LI R , HE Q . Fault diagnosis of nodes in WSN based on par-ticle swarm optimization and Gaussian distribution [J ] . Journal of Vi-bration,Measurement and Diagnosis , 2013 ( 1 ): 149 - 152 .
毛乐琦 . 基于隐马尔科夫模型的无线传感网节点故障诊断算法 [J ] . 计算机应用与软件 , 2014 , 31 ( 1 ): 132 - 135 .
MAO L Q . WSN nodes fault diagnosis algorithm based on hidden markov model [J ] . Computer Applications and Software , 2014 , 31 ( 1 ): 132 - 135 .
蒋鹏 . 一种改进的 DFD 无线传感器网络节点故障诊断算法研究 [J ] . 传感技术学报 , 2008 , 21 ( 8 ): 1417 - 1421 .
JIANG P . Research on an improved distributed fault detection algo-rithm for node failure diagnosis in wireless sensor networks [J ] . Chi-nese Journal of Sensors and Actuators , 2008 , 21 ( 8 ): 1417 - 1421 .
高建良 , 徐勇军 , 李晓维 . 基于加权中值的分布式传感器网络故障检测 [D ] . 软件学报 , 2017 , 18 ( 5 ): 1208 - 1217 .
GAO J L , XU Y J , LI X W . Weighted-Median based distributed fault detection for wireless sensor networks [J ] . Journal of Software , 2017 , 18 ( 5 ): 1208 - 1217 .
ROSIPAL R . Nonlinear partial least squares:an overview [J ] . Chemo in for Maniocs and Advanced Machine Learning Perspectives:Complex Amputation Methods and Collaborative Techniques , 2010 : 169 - 189 .
HENSELER J , RINGLE C M , SARSTEDT M . Testing measurement invariance of composites using partial least squares [J ] . International Marketing Review , 2016 , 33 ( 3 ): 405 - 431 .
KANEKO H , FUNATSU K . Ensemble locally weighted partial least squares as a just-in-time modeling method [J ] . AIChE Journal , 2016 , 62 ( 3 ): 717 - 725 .
ROSIPAL R . Kernel partial least squares for nonlinear regression and discrimination [J ] . Neural Network World , 2003 , 13 ( 3 ): 291 - 300 .
WONG E , PALANDE S , WANG B , et al . Kernel partial least squares regression for relating functional brain network topology to clinical measures of behavior [C ] // 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) . 2016 : 1303 - 1306 .
JIA Q , ZHANG Y . Quality-related fault detection approach based on dynamic kernel partial least squares [J ] . Chemical Engineering Research and Design , 2016 , 106 : 242 - 252 .
ZHANG Q C , ZHU C S , YANG L T , et al . An incremental CFS algorithm for clustering large data in industrial internet of things [J ] . IEEE Transactions on Industrial Informatics , 2017 , 13 ( 3 ): 1193 - 1201 .
0
浏览量
584
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构