浏览全部资源
扫码关注微信
1. 黑龙江大学计算机科学技术学院,黑龙江 哈尔滨 150080
2. 黑龙江省数据库与并行计算重点实验室,黑龙江 哈尔滨 150080
[ "王瑞(1993-),女,黑龙江绥滨人,黑龙江大学硕士生,主要研究方向为社交网络分析。" ]
[ "刘勇(1975-),男,河北昌黎人,博士,黑龙江大学副教授,主要研究方向为数据挖掘和社交网络分析。" ]
[ "朱敬华(1976-),女,黑龙江齐齐哈尔人,博士,黑龙江大学教授,主要研究方向为传感器网络与数据挖掘。" ]
[ "玄萍(1979-),女,黑龙江五常人,博士,黑龙江大学教授,主要研究方向为机器学习和生物信息学。" ]
[ "李金宝(1969-),男,黑龙江庆安人,博士,黑龙江大学教授,主要研究方向为传感器网络与大数据管理。" ]
网络出版日期:2017-11,
纸质出版日期:2017-11-25
移动端阅览
王瑞, 刘勇, 朱敬华, 等. 基于用户影响与兴趣的社交网信息传播模型[J]. 通信学报, 2017,38(Z2):113-121.
Rui WANG, Yong LIU, Jing-hua ZHU, et al. Social network information diffusion model based on user’s influence and interesting[J]. Journal on communications, 2017, 38(Z2): 113-121.
王瑞, 刘勇, 朱敬华, 等. 基于用户影响与兴趣的社交网信息传播模型[J]. 通信学报, 2017,38(Z2):113-121. DOI: 10.11959/j.issn.1000-436x.2017264.
Rui WANG, Yong LIU, Jing-hua ZHU, et al. Social network information diffusion model based on user’s influence and interesting[J]. Journal on communications, 2017, 38(Z2): 113-121. DOI: 10.11959/j.issn.1000-436x.2017264.
提出了一种新的无拓扑结构的社交网信息传播模型,简称 NT-II,并使用表达学习方式,构建了 2 个隐藏的空间:用户影响空间和用户兴趣空间,每个用户和每个传播项都映射成空间中的向量。模型在预测用户接收传播项的概率时,既考虑来自其他用户的影响程度,又考虑该用户对传播项的喜爱程度,分别根据2个用户向量之间的距离和用户向量和传播项向量之间的距离来推断。实验结果表明:NT-II 模型能更准确地模拟传播过程和预测传播结果。
A new non-topological information diffusion model of social network was proposed
called non-topological influence-interest diffusion model (NT-II).Representation learning was exploited to construct two hidden spaces for NT-II,called the user-influence space and the user-interest space
each user and each propagation item was mapped into a vector in space.The model predicted the probability of a user receiving a propagated item
considering not only the degree of influence from other users
but also the user's preference for propagated item.The experimental results show that the model can simulate the propagation process and predict the propagation results more accurately.
海沫 , 郭庆 . 在线社交网络信息传播模型研究 [J ] . 小型微型计算机系统 , 2016 , 37 ( 8 ): 1672 - 1679 .
HAI M , GUO Q . Research on online social network information transmission model [J ] . Small Microcomputer System , 2016 , 37 ( 8 ): 1672 - 1679 .
GOMEZ RODRIGUEZ M , LESKOVEC J , LKOPF B . Structure and dynamics of information pathways in online media [C ] // ACM International Conference on Web Search and Data Mining . ACM , 2013 : 23 - 32 .
YANG J , LESKOVEC J . Modeling information diffusion in implicit networks [C ] // ICDM 2010,the IEEE International Conference on Data Mining . 2011 : 599 - 608 .
BOURIGAULT S , LAMPRIER S , GALLINARI P . Representation learning for information diffusion through social networks:an embedded cascade model [C ] // ACM International Conference on Web Search and Data Mining . 2016 : 573 - 582 .
FENG S , LI X , ZENG Y , et al . Personalized ranking metric embedding for next new POI recommendation [C ] // International Conference on Artificial Intelligence . 2015 : 2069 - 2075 .
BENGIO Y , COURVILLE A , VINCENT P . Representation learning:a review and new perspectives [J ] . IEEE Transactions on Pattern Analysis & Machine Intelligence , 2013 , 35 ( 8 ): 1798 - 1828 .
SAITO K , NAKANO R , KIMURA M . Prediction of information diffusion probabilities for independent cascade model [C ] // International Conference on Knowledge-Based Intelligent Information and Engineering Systems . Springer-Verlag , 2008 : 67 - 75 .
SAITO K , OHARA K , YAMAGISHI Y , et al . Learning diffusion probability based on node attributes in social networks [C ] // Foundations of Intelligent Systems,International Symposium.2011 . 2011 : 153 - 162 .
GOMEZ R M , LESKOVEC J , LKOPF B . Structure and dynamics of information pathways in online media [C ] // ACM International Conference on Web Search and Data Mining . 2013 : 23 - 32 .
LAGNIER C , DENOYER L , GAUSSIER E , et al . Predicting information diffusion in social networks using content and user's profiles [J ] . Lecture Notes in Computer Science , 2016 , 7814 : 74 - 85 .
GOMEZ-RODRIGUEZ M , LESKOVEC J , KRAUSE A . Inferring networks of diffusion and Influence [C ] // ACM Knowledge Discovery and Data Mining . 2011 : 1019 - 1028 .
SIMMA A , JORDAN M I . Modeling events with cascades of poisson processes [J ] . Computer Science Learning , 2012 : 546 - 555 .
BOURIGAULT S , LAGNIER C , LAMPRIER S , et al . Learning social network embeddings for predicting information diffusion [C ] // ACM International Conference on Web Search and Data Mining . 2014 : 393 - 402 .
SAITO K , KIMURA M , OHARA K , et al . Learning continuous-time information diffusion model for social behavioral data analysis [C ] // Asian Conference on Machine Learning:Advances in Machine Learning.Springer-Verlag . 2009 : 322 - 337 .
RODRIGUEZ M G , BALDUZZI D , SCHÖLKOPF B . Uncovering the temporal dynamics of diffusion networks [C ] // International Conference on Machine Learning . 2011 : 561 - 568 .
0
浏览量
547
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构