浏览全部资源
扫码关注微信
1. 北京科技大学计算机与通信工程学院,北京 100083
2. 材料领域知识工程北京市重点实验室,北京100083
[ "柴铎(1995-),男,陕西府谷人,北京科技大学工程师,主要研究方向为聊天机器人、机器翻译等深度学习在自然语言处理领域的应用。" ]
[ "徐诚(1988-),男,辽宁开原人,北京科技大学博士生,主要研究方向为室内定位、无线通信网络、模式识别等。" ]
[ "何杰(1983-),男,浙江台州人,博士,北京科技大学副教授,主要研究方向为室内定位、无线通信网络、模式识别等。" ]
[ "张少阳(1991-),男,河北石家庄人,北京科技大学硕士生,主要研究方向为模式识别等。" ]
[ "段世红(1973-),女,山西太原人,博士,北京科技大学副教授,主要研究方向为计算机软件、无线通信网络、模式识别等。" ]
[ "齐悦(1975-),女,辽宁沈阳人,博士,北京科技大学副教授,主要研究方向为计算机软件、无线通信网络、模式识别等。" ]
网络出版日期:2017-11,
纸质出版日期:2017-11-25
移动端阅览
柴铎, 徐诚, 何杰, 等. 运用开端神经网络进行人体姿态识别[J]. 通信学报, 2017,38(Z2):122-128.
Duo CHAI, Cheng XU, Jie HE, et al. Inception neural network for human activity recognition using wearable sensor[J]. Journal on communications, 2017, 38(Z2): 122-128.
柴铎, 徐诚, 何杰, 等. 运用开端神经网络进行人体姿态识别[J]. 通信学报, 2017,38(Z2):122-128. DOI: 10.11959/j.issn.1000-436x.2017262.
Duo CHAI, Cheng XU, Jie HE, et al. Inception neural network for human activity recognition using wearable sensor[J]. Journal on communications, 2017, 38(Z2): 122-128. DOI: 10.11959/j.issn.1000-436x.2017262.
通过迁移深度神经网络在图像识别方面的经验,提出了一种基于Inception神经网络和循环神经网络结合的深度学习模型(InnoHAR),该模型端对端地输入多通道传感器的波形数据,利用 1×1 卷积对多通道数据的有机组合,不同尺度的卷积提取不同尺度的波形特征,最大池化过滤微小扰动造成的假阳性,结合时间特征提取(GRU)为时序特征建模,充分利用数据特征完成分类任务。相比已知最优的神经网络模型,在识别准确度上有近 3%的提升,达到了state-of-the-art的水平,同时可以保证低功耗嵌入式平台的实时预测,且在网络结构组成上更加丰富,具有更大的潜力和挖掘空间。
The experience from computer vision was learned
an innovative neural network model called InnoHAR (inception neural network for human activity recognition) based on the inception neural network and recurrent neural network was put forward
which started from an end-to-end multi-channel sensor waveform data
followed by the 1×1 convolution for better combination of the multi-channel data
and the various scales of convolution to extract the waveform characteristics of different scales
the max-pooling layer to prevent the disturbance of tiny noise causing false positives
combined with the feature of GRU helped to time-sequential modeling
made full use of the characteristics of data classification task.Compared with the state-of-the-art neural network model
the InnoHAR model has a promotion of 3% in the recognition accuracy
which has reached the state-of-the-art on the dataset we used
at the same time it still can guarantee the real-time prediction of low-power embedded platform
also with more space for future exploration.
XU C , HE J , ZHANG X T , et al . Detection of freezing of gait using template-matching-based approaches [J ] . Journal of Sensors , 2017 , 2017 ( 2 ): 1 - 8 .
XU C , HE J , ZHANG X T , et al . Geometrical kinematic modeling on human motion using method of multi-sensor fusion [J ] . Information Fusion , 2017
MARGARITO J , HELAOUI R , BIANCHI A M , et al . User independent recognition of sports activities from a single wrist-worn accelerometer:a template-matching-based approach [J ] . IEEE Transactions on Bio-medical Engineering , 2015 , 63 ( 4 ): 788 - 796 .
ROY P C , GIROUX S , BOUCHARD B , et al . A possibilistic approach for activity recognition in smart homes for cognitive assistance to alzheimer’s patients [C ] // Activity Recognition in Pervasive Intelligent Environments . Atlantis Press , 2011 : 33 - 58 .
SZEGEDY C , LIU W , JIA Y , et al . Going deeper with convolutions [C ] // Computer Vision and Pattern Recognition . 2014 : 1 - 9 .
HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition [C ] // Computer Vision and Pattern Recognition . 2015 : 770 - 778 .
BENGIO Y , LECUN Y . Convolutional networks for images,speech,and time-series [J ] . Convolutional Networks for Images,Speech and Time Series , 1995 .
GERS F A , SCHRAUDOLPH N N , SCHMIDHUBER J , et al . Learning precise timing with lstm recurrent networks [J ] . Journal of Machine Learning Research , 2003 , 3 ( 1 ): 115 - 143 .
ORDÓÑEZ F J , ROGGEN D . Deep convolutional and LSTM Recurrent neural networks for multimodal wearable activity recognition [J ] . Sensors , 2016 , 16 ( 1 ):115.
GERS F A , SCHRAUDOLPH N N, SCHMIDHUBER J , et al . Learn ing precise timing with lstm recurrent networks [J ] . Journal of Machine Learning Research , 2003 , 3 ( 1 ): 115 - 143 .
XU C , HE J , ZHANG X T , et al . Toward Near-Ground Localization:Modeling and Applications for TOA Ranging Error [J ] . IEEE Transactions on Antennas & Propagation , 2017 , 65 ( 10 ): 5658 - 5662 .
CHAVARRIAGA R , SAGHA H , CALATRONI A , et al . The opportunity challenge:a benchmark database for on-body sensor-based activity recognition [J ] . Pattern Recognition Letters , 2013 , 34 ( 15 ): 2033 - 2042 .
0
浏览量
1185
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构