浏览全部资源
扫码关注微信
1. 北京电子科技学院信息安全研究所,北京 100070
2. 福州大学数学与计算机科学学院,福建 福州 350108
[ "袁峰(1982-),男,北京人,博士,北京电子科技学院助理研究员,主要研究方向为密码学及信息安全。" ]
[ "江继军(1976-),男,江西南昌人,北京电子科技学院工程师,主要研究方向为信息安全。" ]
[ "杨旸(1984-),女,湖北随州人,博士,福州大学副教授、硕士生导师,主要研究方向为密码学及信息安全。" ]
[ "许盛伟(1976-),男,江西吉安人,博士,北京电子科技学院副研究员、硕士生导师,主要研究方向为网络安全。" ]
网络出版日期:2017-11,
纸质出版日期:2017-11-25
移动端阅览
袁峰, 江继军, 杨旸, 等. 与3类向量值密码函数仿射等价的函数数量研究[J]. 通信学报, 2017,38(11):84-92.
Feng YUAN, Ji-jun JIANG, Yang YANG, et al. Research on affine equivalence enumeration of the three families vectorial function[J]. Journal on communications, 2017, 38(11): 84-92.
袁峰, 江继军, 杨旸, 等. 与3类向量值密码函数仿射等价的函数数量研究[J]. 通信学报, 2017,38(11):84-92. DOI: 10.11959/j.issn.1000-436x.2017206.
Feng YUAN, Ji-jun JIANG, Yang YANG, et al. Research on affine equivalence enumeration of the three families vectorial function[J]. Journal on communications, 2017, 38(11): 84-92. DOI: 10.11959/j.issn.1000-436x.2017206.
Qu-Tan-Tan-Li函数、Zha-Hu-Sun函数和Tang-Carlet-Tang函数是近些年提出的差分均匀度为4、各项安全性指标均优良的向量值密码函数。研究与这3种密码函数仿射等价函数的计数问题。利用有限域的一些性质,分别计算出与Zha-Hu-Sun函数仿射等价函数数量的上下界,与Qu-Tan-Tan-Li函数和Tang-Carlet-Tang函数仿射等价函数数量的上界。此外,对于Zha-Hu-Sun函数仿射等价函数数量的精确值提出了猜测。研究结果表明,有限域GF(2
8
)上至少有5
<math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mn>2</mn> <mrow> <mn>53</mn></mrow> </msup> <msup> <mrow><mo>[</mo> <mrow> <mstyle displaystyle="true"> <munderover> <mo>∏</mo> <mrow> <mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>8</mn> </munderover> <mrow> <mo stretchy="false">(</mo><msup> <mn>2</mn> <mi>i</mi> </msup> <mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow> </mstyle></mrow> <mo>]</mo></mrow> <mn>2</mn> </msup> </math>
个与Zha-Hu-Sun函数仿射等价的密码函数可直接用于分组密码的S盒。
In recent years
Qu-Tan-Tan-Li function
Zha-Hu-Sun function and Tang-Carlet-Tang function have been proposed with differential uniformity 4 and many good cryptographic properties.the counting problem of affine equivalent to the three families cryptographic functions was investigated.By using some properties of finite fields
the upper and lower bound of the number of affine equivalent to the Zha-Hu-Sun function
and the upper bound of the number of affine equivalent to the Qu-Tan-Tan-Li function and Tang-Carlet-Tang function were computed
respectively.Moreover
a conjecture was given about the exact number of affine equivalent to the Zha-Hu-Sun function.Results show that there are at least
<math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mn>2</mn> <mrow> <mn>53</mn></mrow> </msup> <msup> <mrow><mo>[</mo> <mrow> <mstyle displaystyle="true"> <munderover> <mo>∏</mo> <mrow> <mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>8</mn> </munderover> <mrow> <mo stretchy="false">(</mo><msup> <mn>2</mn> <mi>i</mi> </msup> <mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow> </mstyle></mrow> <mo>]</mo></mrow> <mn>2</mn> </msup> </math>
cryptographic functions of affine equivalent to the Zha-Hu-Sun function over finite field GF(2
8
)
which can be chosen as S-boxes of block ciphers.
DAEMEN J , RIJMEN V . The design of rijndael:AES-the advanced encryption standard [M ] . Springer-Verlag , 2002 .
ZHA Z B , HU L , SUN S . Constructing new differentially 4-uniform permutations from the Inverse function [J ] . Finite Fields and Their Applications , 2014 , 25 : 64 - 78 .
BERGER T P , CANTEAUT A , CHARPIN P , et al . On almost perfect nonlinear functions over GF(2 n ) [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 9 ): 4160 - 4170 .
CARLET C , GONG G , TAN Y . Quadratic zero-difference balanced functions,APN functions and strongly regular graphs [J ] . Designs,Codes and Crytography , 2016 , 78 ( 3 ): 629 - 654 .
BROWNING K A , DILLCN J F , MCQUISTAN M T , et al . An APN permutation in dimension six [C ] // The 9th Interactional Conference on Finite Fields and Their Applications (FQ9) . 2010 : 33 - 42 .
CARLET C , . On known and new differentially uniform functions [C ] // The 16th Australasian Conference on Information Security and Privacy (ACISP 2011) . 2011 : 1 - 15 .
QU L , TAN Y , TAN C H , et al . Constructing differentially 4-uniform permutations over GF(22 k ) via the switching method [J ] . IEEE Transactions on Information Theory , 2013 , 59 ( 7 ): 4675 - 4686 .
TANG D , CARLET C , TANG X . Differentially 4-uniform bijections by permuting the inverse function [J ] . Designs,Codes and Cryptography , 2015 , 77 ( 1 ): 117 - 141 .
CARLET C , CHARPIN P , ZINOVIEV V . Codes,bent functions and permutations suitable for DES-like cryptosystems [J ] . Designs,Codes and Cryptography , 1998 , 15 ( 2 ): 125 - 156 .
LIDL R , NIEDERREITER H . Finite fields [M ] . Second edition,Cambridge,U . K. : Cambridge University PressPress , 1983 .
WAN Z . Geometry of classical groups over finite fields [M ] . Second edition,Bejing : Science PressPress , 2006 .
0
浏览量
558
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构