浏览全部资源
扫码关注微信
1. 湘潭大学信息工程学院,湖南 湘潭 411105
2. 湖南大学电气与信息工程学院,湖南 长沙 410082
3. 湘潭大学控制工程研究所,湖南 湘潭 411105
[ "汤红忠(1979-),女,湖南衡山人,湖南大学博士生,湘潭大学副教授,主要研究方向为图像处理与模式识别、字典学习及稀疏表示。" ]
[ "王翔(1991-),男,湖南衡阳人,湘潭大学硕士生,主要研究方向为图像处理与模式识别。" ]
[ "张小刚(1972-),男,河南汝南人,湖南大学教授、博士生导师,主要研究方向为工业过程控制与模式识别。" ]
[ "李骁(1993-),男,湖南临湘人,湘潭大学硕士生,主要研究方向为图像处理与模式识别。" ]
[ "毛丽珍(1994-),女,湖南岳阳人,湘潭大学硕士生,主要研究方向为图像处理与模式识别。" ]
网络出版日期:2017-07,
纸质出版日期:2017-07-25
移动端阅览
汤红忠, 王翔, 张小刚, 等. 面向单幅图像去雨的非相干字典学习及其稀疏表示研究[J]. 通信学报, 2017,38(7):28-35.
Hong-zhong TANG, Xiang WANG, Xiao-gang ZHANG, et al. Incoherent dictionary learning and sparse representation for single-image rain removal[J]. Journal on communications, 2017, 38(7): 28-35.
汤红忠, 王翔, 张小刚, 等. 面向单幅图像去雨的非相干字典学习及其稀疏表示研究[J]. 通信学报, 2017,38(7):28-35. DOI: 10.11959/j.issn.1000-436x.2017149.
Hong-zhong TANG, Xiang WANG, Xiao-gang ZHANG, et al. Incoherent dictionary learning and sparse representation for single-image rain removal[J]. Journal on communications, 2017, 38(7): 28-35. DOI: 10.11959/j.issn.1000-436x.2017149.
提出一种非相干字典学习及稀疏表示方法,并将其应用于单幅图像去雨。该方法在字典学习阶段,为降低有雨原子与无雨原子间的相似性,引入字典的非相干性,构建新的目标函数,不仅可以保证有雨字典与无雨字典的可分性,而且学习的非相干字典具有类似于紧框架的性质,可以逼近等角紧框架。通过有雨字典与无雨字典对高频图像的稀疏表示,能够更好地分离出高频图像中的有雨分量与无雨分量,将高频无雨分量与低频图像融合实现图像去雨。采用合成雨图与真实雨图对算法进行验证,实验结果表明,算法所学习的非相干字典具有较好的稀疏表示性能,去雨后的图像雨线残留较少,边缘细节保持较好,视觉效果更为清晰自然。
The incoherent dictionary learning and sparse representation algorithm was present and it was applied to single-image rain removal.The incoherence of the dictionary was introduced to design a new objective function in the dictionary learning
which addressed the problem of reducing the similarity between rain atoms and non-rain atoms.The divisibility of rain dictionary and non-rain dictionary could be ensured.Furthermore
the learned dictionary had similar properties to the tight frame and approximates the equiangular tight frame.The high frequency in the rain image could be decomposed into a rain component and a non-rain component by performing sparse coding based learned incoherent dictionary
then the non-rain component in the high frequency and the low frequency were fused to remove rain.Experimental results demonstrate that the learned incoherent dictionary has better performance of sparse representation.The recovered rain-free image has less residual rain
and preserves effectively the edges and details.So the visual effect of recovered image is more sharpness and natural.
WANG Y , CHEN C , ZHU S , et al . A framework of single-image derainingmethod based on analysis of rain characteristics [C ] // IEEE International Conference on Image Processing . 2016 : 4087 - 4091 .
MI Z , SHANG J , ZHOU H , et al . Image fusion-based video deraining using sparse representation [J ] . Electronics Letters , 2016 , 52 ( 18 ): 1528 - 1529 .
YANG W , TAN R T , FENG J , et al . Joint rain detection and removal via iterative region dependent multi-task learning [J ] . arXiv preprint arXiv:1609.07769 , 2016 .
WU Q , ZHANG W , KUMAR B V K V . Raindrop detection and removal using salient visual features [C ] // 19th IEEE International Conference on Image Processing . 2012 : 941 - 944 .
KIM J H , LEE C , SIM J Y , et al . Single-image deraining using an adaptive nonlocal means filter [C ] // 2013 IEEE International Conference on Image Processing . 2013 : 914 - 917 .
CHEN Y L , HSU C T . A generalized low-rank appearance model for spatio-temporally correlated rain streaks [C ] // The IEEE International Conference on Computer Vision . 2013 : 1968 - 1975 .
LI Y , TAN R T , GUO X , et al . Rain streak removal using layer priors [C ] // The IEEE Conference on Computer Vision and Pattern Recognition . 2016 : 2736 - 2744 .
KANG L W , LIN C W , FU Y H . Automatic single-image-based rain streaks removal via image decomposition [J ] . IEEE Transactions on Image Processing , 2012 , 21 ( 4 ): 1742 - 1755 .
HUANG D A , KANG L W , WANG Y C F , et al . Self-learning based image decomposition with applications to single image denoising [J ] . IEEE Transactions on Multimedia , 2014 , 16 ( 1 ): 83 - 93 .
LUO Y , XU Y , JI H . Removing rain from a single image via discriminative sparse coding [C ] // The IEEE International Conference on Computer Vision . 2015 : 3397 - 3405 .
ELAD M , AHARON M . Image denoising via sparse and redundant representations over learned dictionaries [J ] . IEEE Transactions on Image Processing , 2006 , 15 ( 12 ): 3736 - 3745 .
MAIRAL J , BACH F , PONCE J , et al . Online dictionary learning for sparse coding [C ] // The 26th Annual International Conference on Machine Learning . 2009 : 689 - 696 .
汤雅妃 , 张云勇 , 郭志斌 . 基于稀疏表达的微弱信号提取及检测方法 [J ] . 通信学报 , 2015 , 36 ( Z1 ): 215 - 223 .
TANG Y F , ZHANG Y Y , GUO Z B . Approach to weak signal extraction and detection via spanse representation [J ] . Journal on Communications , 2015 , 36 ( Z1 ): 215 - 223 .
汤红忠 , 张小刚 , 陈华 , 等 . 带边界条件约束的非相干字典学习方法及其稀疏表示 [J ] . 自动化学报 , 2015 , 41 ( 2 ): 312 - 319 .
TANG H Z , ZHANG X G , CHEN H , et al . Incoherent dictionary learning method with border condition constrained for sparse representation [J ] . Acta Automatic Sincia , 2015 , 41 ( 2 ): 312 - 319 .
TANG H Z , ZHANG X , CHEN H , et al . Incoherent dictionary learning method based on unit norm tight frame and manifold optimization for sparse representation [J ] . Mathematical Problems in Engineering , 2016 .
GUREVICH S , HADANI R . Incoherent dictionaries and the statistical restricted isometry property [J ] . arXiv preprint arXiv:0809.1687 , 2008 .
SUSTIK M A , TROPP J A , DHILLON I S , et al . On the existence of equiangular tight frames [J ] . Linear Algebra and Its Applications , 2007 , 426 ( 2 ): 619 - 635 .
RAKOTOMAMONJY A . Direct optimization of the dictionary learning problem [J ] . IEEE Transactions on Signal Processing , 2013 , 61 ( 22 ): 5495 - 5506 .
LIU D C , NOCEDAL J . On the limited memory BFGS method for large scale optimization [J ] . Mathematical Programming , 1989 , 45 ( 1-3 ): 503 - 528 .
WANG Z , BOVIK A C , SHEIKH H R , et al . Image quality assessment:from error visibility to structural similarity [J ] . IEEE Transactions on Image Processing , 2004 , 13 ( 4 ): 600 - 612 .
0
浏览量
1211
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构