浏览全部资源
扫码关注微信
1. 天津商业大学信息工程学院,天津 300134
2. 天津工业大学电子信息工程学院,天津 300387
[ "陈雷(1980-),男,河北唐山人,博士后,天津商业大学副教授,主要研究方向为盲信号处理、仿生智能计算等。" ]
[ "甘士忠(1994-),男,河南信阳人,天津工业大学硕士生,主要研究方向为盲信号处理、仿生智能计算等。" ]
[ "张立毅(1963-),男,山西忻州人,博士,天津商业大学教授、博士生导师,主要研究方向为盲信号处理、信号检测与处理等。" ]
[ "王光艳(1975-),女,河北邯郸人,博士,天津商业大学副教授,主要研究方向为盲信号处理、语音增强、水下语音通信等。" ]
网络出版日期:2017-07,
纸质出版日期:2017-07-25
移动端阅览
陈雷, 甘士忠, 张立毅, 等. 基于样条插值与人工蜂群优化的非线性盲源分离算法[J]. 通信学报, 2017,38(7):36-46.
Lei CHEN, Shi-zhong GAN, Li-yi ZHANG, et al. Nonlinear blind source separation algorithm based on spline interpolation and artificial bee colony optimization[J]. Journal on communications, 2017, 38(7): 36-46.
陈雷, 甘士忠, 张立毅, 等. 基于样条插值与人工蜂群优化的非线性盲源分离算法[J]. 通信学报, 2017,38(7):36-46. DOI: 10.11959/j.issn.1000-436x.2017147.
Lei CHEN, Shi-zhong GAN, Li-yi ZHANG, et al. Nonlinear blind source separation algorithm based on spline interpolation and artificial bee colony optimization[J]. Journal on communications, 2017, 38(7): 36-46. DOI: 10.11959/j.issn.1000-436x.2017147.
针对更加复杂的非线性混合情况,提出一种基于样条插值拟合与群智能优化的后非线性盲源分离算法。采用样条插值函数拟合去非线性函数,使用负熵作为分离的评价准则,建立分离模型。分离过程采用改进的人工蜂群算法优化求解样条插值节点参数,并在分离的目标函数中引入相关性约束条件进行解空间范围限制,克服分离过程中存在的异常值现象。针对语音数据的分离实验结果表明,所提算法能够有效实现非线性混合信号的盲分离,较传统的基于奇数多项式拟合的分离算法具有更高的分离精度。
A post-nonlinear blind source separation algorithm based on spline interpolation fitting and artificial bee colony optimization was proposed for the more complicated nonlinear mixture situations.The separation model was constructed by using the spline interpolation to fit the inverse nonlinear distortion function and using entropy as the separation criterion.The spline interpolation node parameters were solved by the modified artificial bee colony optimization algorithm.The correlation constraint was added into the objective function for limiting the solution space and the outliers wuld be restricted in the separation process.The results of speech sounds separation experiment show that the proposed algorithm can effectively realize the signal separation for the nonlinear mixture.Compared with the traditional separation algorithm based on odd polynomial fitting
the proposed algorithm has higher separation accuracy.
HYVARINEN A , KARHUNEN J , OJA E . Independent component analysis [M ] . JohnWiley & Sons , 2001 .
KURAYA M , UCHIDA A , YOSHIMORI S , et al . Blind source separation of chaotic laser signals by independent component analysis [J ] . Optics Express , 2008 , 16 ( 2 ): 725 - 730 .
MATILAINEN M , NORDHAUSEN K , OJA H . New independent component analysis tools for time series [J ] . Statistics & Probability Letters , 2015 , 105 : 80 - 87 .
DIAMANTARAS K I , PAPADIMITRIOU T . Applying PCA neural models for the blind separation of signals [J ] . Neurocomputing , 2009 , 73 ( 1-3 ): 3 - 9 .
STONE J V . Blind source separation using temporal predictability [J ] . Neural Computation , 2001 , 13 ( 7 ): 1559 - 1574 .
陈雷 , 张立毅 , 郭艳菊 , 等 . 基于时间可预测性的差分搜索盲信号分离算法 [J ] . 通信学报 , 2014 , 35 ( 6 ): 117 - 125 .
CHEN L , ZHANG L Y , GUO Y J , et al . Blind signal separation algorithm based on temporal predictability and differential search algorithm [J ] . Journal on Communications , 2014 , 35 ( 6 ): 117 - 125 .
GUAN L , KEARNEY R , ZHU C Y A , et al . High-performance digital predistortion test platform development for wideband RF power amplifiers [J ] . International Journal of Microwave and Wireless Technologies , 2013 , 5 ( 5 ): 149 - 162 .
ACCARDO A , CUSENZA M , MONTI F . Linear and non-linear parameterization of EEG during monitoring of carotid endarterectomy [J ] . Computers in Biology and Medicine , 2009 , 39 ( 6 ): 512 - 518 .
HYVARINEN A , PAJUNEN P . Nonlinear independent component analysis:existence and uniqueness results [J ] . Neural Networks , 1999 , 12 ( 3 ): 429 - 439 .
TALEB A , JUTTEN C . Source separation in post-nonlinear mixtures [J ] . IEEE Transactions on Signal Processing , 1999 , 47 ( 10 ): 2807 - 2802 .
FILHO E F S , SEIXAS J M , CALOBA L P . Modified post-nonlinear ICA model for online neural discrimination [J ] . Neurocomputing , 2010 , 73 ( 6-8 ): 820 - 2828 .
DUARTE L T , SUYAMA R , RIVET B , et al . Blind compensation of nonlinear distortions:application to source separation of post-nonlinear mixtures [J ] . IEEE Transactions on Signal Processing , 2012 , 60 ( 11 ): 5832 - 5844 .
AZIZ N B A , ABDULLAH W F H , TAHIR N M . Implementation of nonlinear blind source separation for CHEMFET sensor arrays [C ] // The 2014 IEEE 10th International Colloquium on Signal Processing and its Applications . 2014 : 238 - 241 .
LEE T W , KOEHLER B U , ORGLMEISTER R . Blind source separation of nonlinear mixing models [C ] // The 1997 IEEE Signal Processing Society Workshop:Neural Networks for Signal Processing VII . 1997 : 406 - 415 .
YANG H H , AMARI S , CICHOCKI A . Information-theoretic approach to blind separation of source in non-linear mixture [J ] . Signal Processing Litters , 2000 , 7 ( 7 ): 197 - 200 .
TAN Y , WANG J , ZURADA J . Nonlinear blind source separation using a radial basis function network [J ] . IEEE Transactions on Neural Networks , 2001 , 12 ( 1 ): 124 - 134 .
KARABOGA N . A new design method based on artificial bee colony algorithm for digital IIR filters [J ] . Journal of the Franklin Institute , 2009 , 346 ( 4 ): 328 - 348 .
ATYABI A , LUERSSEN M H , POWERS D M W . PSO-based dimension reduction of EEG recordings:implications for subject transfer in BCIO [J ] . Neurocomputing , 2013 , 119 : 319 - 331 .
KUMAR E V , RAAJA G S , JEROME J . Adaptive PSO for optimal LQR tracking control of 2 DoF laboratory helicopter [J ] . Applied Soft Computing , 2016 , 41 : 77 - 90 .
陈雷 , 张立毅 , 郭艳菊 , 等 . 基于细菌群体趋药性的有序音信号分离算法 [J ] . 通信学报 , 2011 , 32 ( 4 ): 77 - 85 .
CHEN L , ZHANG L Y , GUO Y J , et al . Sequential blind signal algorithm based on bacterial colony chemo taxis [J ] . Journal on Communications , 2011 , 32 ( 4 ): 77 - 85 .
张银雪 , 田学民 , 邓晓刚 . 基于改进人工蜂群算法的盲源分离方法 [J ] . 电子学报 , 2012 , 40 ( 10 ): 2026 - 2030 .
ZHANG Y X , TIAN X M , DENG X G . Blind source separation based on modified bee colony algorithm [J ] . Acta Electronica Sinica , 2012 , 40 ( 10 ): 2026 - 2030 .
MAVADDATY S , EBRAHIMZADEH A . A comparative study of bees colony algorithm for blind source separation [C ] // The 20th Iranian Conference on Electrical Engineering . 2012 : 1172 - 1177 .
CHEN L , ZHANG L Y , GUO Y J , et al . Blind source separation based on covariance ratio and artificial bee colony algorithm [J ] . Mathematical Problems in Engineering , 2014 ,484327.
GORRIZ J M , PUNTONET C G , ROJAS F . Optimizing blind source separation with guided genetic algorithms [J ] . Neurocomputing , 2006 , 69 ( 13-15 ): 1442 - 1457 .
TAN Y , WANG J . Nonlinear blind source separation using higher order statistics and a genetic algorithm [J ] . IEEE Transactions on Evolutionary Computation , 2002 , 5 ( 6 ): 600 - 612 .
KARABOGA D . An idea based on honey bee swarm for numerical optimization [R ] . Technical Report-TR06 , 2005 .
SINGH A . An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem [J ] . Applied Soft Computing , 2009 , 9 ( 2 ): 625 - 631 .
SABAT S L , UDGATA S K , ABRAHAM A . Artificial bee colony algorithm for small signal model parameter extraction of MESFET [J ] . Engineering Applications of Artificial Intelligence , 2010 , 23 ( 5 ): 689 - 694 .
MANOJ V J , ELIAS E . Artificial bee colony algorithm for the design of multiplier-less nonuniform filter bank transmultiplexer [J ] . Information Sciences , 2012 , 192 : 193 - 203 .
GAO W F , LIU S Y . Modified artificial bee colony algorithm [J ] . Computers & Operations Research , 2012 , 39 ( 3 ): 687 - 697 .
HYVARINEN A . Fast and robust fixed-point algorithms for independent component analysis [J ] . IEEE Transactions on Neural Networks , 1999 , 10 ( 3 ): 626 - 634 .
FREEDMAN D , PISANI R , PURVES R . Statistics [M ] . W.W.Norton& Company . 2007 .
BOFILL P , ZIBULEVSKY M . Underdetermined blind source separation using sparse representations [J ] . Signal Processing , 2001 , 81 ( 11 ): 2353 - 2362 .
0
浏览量
812
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构