浏览全部资源
扫码关注微信
1. 武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
2. 武汉大学地球空间信息技术协同创新中心,湖北 武汉 430079
[ "熊文君(1991-),女,湖北黄冈人,武汉大学硕士生,主要研究方向为数据挖掘、隐私保护、网络安全等。" ]
[ "徐正全(1962-),男,湖北黄冈人,博士,武汉大学教授,主要研究方向为数据挖掘、隐私保护、多媒体安全等。" ]
[ "王豪(1990-),男,河南驻马店人,武汉大学博士生,主要研究方向为数据挖掘、隐私保护。" ]
网络出版日期:2017-05,
纸质出版日期:2017-05-25
移动端阅览
熊文君, 徐正全, 王豪. 基于滤波原理的时间序列差分隐私保护强度评估[J]. 通信学报, 2017,38(5):172-181.
Wen-jun XIONG, Zheng-quan XU, Hao WANG. Privacy level evaluation of differential privacy for time series based on filtering theory[J]. Journal on communications, 2017, 38(5): 172-181.
熊文君, 徐正全, 王豪. 基于滤波原理的时间序列差分隐私保护强度评估[J]. 通信学报, 2017,38(5):172-181. DOI: 10.11959/j.issn.1000-436x.2017110.
Wen-jun XIONG, Zheng-quan XU, Hao WANG. Privacy level evaluation of differential privacy for time series based on filtering theory[J]. Journal on communications, 2017, 38(5): 172-181. DOI: 10.11959/j.issn.1000-436x.2017110.
针对目前相关性时间序列差分隐私保护方法没有统一的攻击模型,且不同方法的隐私保护强度无法进行横向比较和度量的问题,设计一种攻击模型。由于这些方法加入的噪声是独立同分布的,且相关性时间序列可以看作短时平稳过程,根据信号处理中滤波的原理,设计一个线性滤波器作为攻击模型以滤除部分噪声。实验结果表明,该攻击模型有效,并为各方法的隐私保护强度提供了统一的度量。
The current differential privacy preserving methods on correlated time series were not designed by protecting against a specific attack model
and the privacy level of them couldn’t be measured.Therefore
an attack model was put forward to solve the above problems.Since the noise series added by these methods was independent and identically distributed
and the time series could be seen as a short-time stationary process
a linear filter was designed based on filtering theory
in order to filter out the noise series.Experimental results show that the proposed attack model is valid
and can work as a unified measurement for these methods.
DWORK C . Differential privacy [M ] . Springer Berlin Heidelberg . 2006 : 1 - 12 .
CAO L , OU Y , YU P S . Coupled behavior analysis with applications [J ] . IEEE Transactions on Knowledge & Data Engineering , 2012 , 24 ( 8 ): 1378 - 1392 .
YANG B , SATO I , NAKAGAWA H . Bayesian differential privacy on correlated data [C ] // SIGMOD/PODS . 2015 : 747 - 762 .
ZHU T , XIONG P , LI G , et al . Correlated differential privacy:hiding information in non-IID data set [J ] . IEEE Transactions on Information Forensics & Security , 2015 , 10 ( 2 ): 229 - 242 .
RASTOGI V , NATH S . Differentially private aggregation of distributed time-series with transformation and encryption [C ] // ACM SIGMOD International Conference on Management of Data . 2010 : 735 - 746 .
XIAO X , WANG G , GEHRKE J . Differential privacy via wavelet transforms [J ] . IEEE Transactions on Knowledge & Data Engineering , 2010 , 23 ( 8 ): 1200 - 1214 .
XIAO X . Differentially private data release:improving utility with wavelets and bayesian networks [M ] . Web Technologies and Applications , 2014 : 25 - 35 .
JIANG W , XIE C , ZHANG Z . Wishart mechanism for differentially private principal components analysis [J ] . Computer Science , 2015 , 9285 : 458 - 473 .
DWORK C . A firm foundation for private data analysis [J ] . Communications of the ACM , 2011 , 54 ( 1 ): 86 - 95 .
DWORK C , MCSHERRY F , NISSIM K . Calibrating noise to sensitivity in private data analysis [C ] // Conference on Theory of Cryptography . 2006 : 265 - 284
ZHENG Y , XIE X , MA W Y . GeoLife:a collaborative social networking service among user,location and trajectory [J ] . Bulletin of the Technical Committee on Data Engineering , 2010 , 33 ( 2 ): 32 - 39 .
HAY M , RASTOGI V , MIKLAU G , et al . Boosting the accuracy of differentially private histograms through consistency [J ] . The VLDB Endowment , 2010 , 3 ( 1 ): 66 - 69 .
DWORK C . Differential privacy:a survey of results [M ] . Theory and Applications of Models of Computation . Springer Berlin Heidelberg , 2008 : 1 - 19 .
0
浏览量
1964
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构