浏览全部资源
扫码关注微信
1. 北京邮电大学软件学院,北京 100876
2. 北京邮电大学计算机学院,北京 100876
[ "曾谁飞(1978-),男,江西广昌人,北京邮电大学博士生,主要研究方向为智能信息处理、机器学习、深度学习和神经网络等。" ]
[ "张笑燕(1973-),女,山东烟台人,博士,北京邮电大学教授,主要研究方向为软件工程理论、移动互联网软件、ad hoc和无线传感器网络。" ]
[ "杜晓峰(1973-),男,陕西韩城人,北京邮电大学讲师,主要研究方向为云计算与大数据分析。" ]
[ "陆天波(1977-),男,贵州毕节人,博士,北京邮电大学副教授,主要研究方向为网络与信息安全、安全软件工程、P2P计算。" ]
网络出版日期:2017-04,
纸质出版日期:2017-04-25
移动端阅览
曾谁飞, 张笑燕, 杜晓峰, 等. 基于神经网络的文本表示模型新方法[J]. 通信学报, 2017,38(4):86-98.
Shui-fei ZENG, Xiao-yan ZHANG, Xiao-feng DU, et al. New method of text representation model based on neural network[J]. Journal on communications, 2017, 38(4): 86-98.
曾谁飞, 张笑燕, 杜晓峰, 等. 基于神经网络的文本表示模型新方法[J]. 通信学报, 2017,38(4):86-98. DOI: 10.11959/j.issn.1000-436x.2017088.
Shui-fei ZENG, Xiao-yan ZHANG, Xiao-feng DU, et al. New method of text representation model based on neural network[J]. Journal on communications, 2017, 38(4): 86-98. DOI: 10.11959/j.issn.1000-436x.2017088.
提出了一种改进的文本表示模型提取文本特征词向量方法。首先构建基于词典索引和所对应的词性索引的double word-embedding列表的word-embedding词向量,其次,利用在此基础上Bi-LSTM循环神经网络对生成后的词向量进一步进行特征提取,最后,通过mean-pooling层处理句子向量后且使用了softmax层进行文本分类。实验验证了Bi-LSTM和double word-embedding神经网络相结合的模型训练效果与提取情况。实验结果表明,该模型不但能较好地处理高质量的文本特征向量提取和表达序列,而且比LSTM、LSTM+context window和Bi-LSTM这3种神经网络有较明显的表达效果。
Method of text representation model was proposed to extract word-embedding from text feature.Firstly
the word-embedding of the dual word-embedding list based on dictionary index and the corresponding part of speech index was created.Then
feature vectors was obtained further from these extracted word-embeddings by using Bi-LSTM recurrent neural network.Finally
the sentence vectors were processed by mean-pooling layer and text categorization was classified by softmax layer.The training effects and extraction performance of the combination model of Bi-LSTM and double word-embedding neural network were verified.The experimental results show that this model not only performs well in dealing with the high-quality text feature vector and the expression sequence
but also significantly outperforms other three kinds of neural networks
which includes LSTM
LSTM+context window and Bi-LSTM.
XU W D , AULI M , CLARK S . CCG supertagging with a recurrent neural network [C ] // The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Short Papers) . 2015 : 250 - 255 .
GEOFFREY E,HINTON , . Learning distributed representations of concepts [C ] // The Eighth Annual Conference of the Cognitive Science Society . Amherst,Mass , 1986 : 1 - 12 .
YAO Y S , HUANG Z . Bi-directional LSTM recurrent neural network for Chinese word segmentation [J ] . arXiv:1602.04874v1[cs.LG] , 2016 .
CHIU J P C , NICHOLS E . Named entity recognition with bidirectional LSTM-CNNs [J ] . Transactions of the Association for Computational Linguistics , 2016 , 4 : 357 - 370 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 ( 8 ): 1735 .
TAN M , XIANG B , ZHOU B W . LSTM-based deep learning models for non-factoid answer selection [C ] // ICLR 2016 .
KIPERWASSER E , GOLDBERG Y . Simple and accurate dependency parsing using Bidirectional LSTM feature representations [J ] . Transactions of the Association for Computational Linguistics , 2016 , 4 : 313 - 327 .
ZEILER M D . ADADELTA:an adaptive learning rate method [J ] . arXir:1212.5701v1[cs.LG] , 2012 .
MIKOLOV T , SUTSKEVER I , CHEN K , et al . Distributed representations of words and phrases and their compositionality [J ] . Advances in Neural Information Processing Systems , 2013 , 26 : 3111 - 3119 .
MAAS A L , DALY R E , PHAM P T , et al . Learning word vectors for sentiment analysis [C ] // The 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies . 2011 : 142 - 150 .
CHO K . Natural language understanding with distributed representation [J ] . Nato Asi , 2015 , 147 : 139 - 155 .
SANTOS C D , TAN M , XIANG B . Attentive pooling networks [J ] . arXir:1602.03609v1[cs.CL] , 2016 .
SEVERYN A , MOSCHITTI A . Modeling relational information in question-answer pairs with convolutional neural networks [J ] . arXiv:1604.01178v1[cs.CL] , 2016 .
CROSS J , HUANG L . Incremental parsing with minimal features using bi-directional LSTM [C ] // The 54th Annual Meeting of the Association for Computational Linguistics . 2016 : 32 - 37 .
TURIAN J , RATINOV L , BENGIO Y . Word representations:a simple and general method for semi-supervised learning [C ] // The 48th Annual Meeting of the Association for Computational Linguistics . 2010 : 384 - 394 .
SUGAWARA H , TAKAMURA H , SASANO R , et al . Context representation with word embeddings for WSD [M ] . Computational Linguistics.Springer . Singapore , 2015 : 108 - 119 .
SUNDERMEYER M,SCHLÜTER R , NEY H . LSTM neural networks for language modeling [J ] . Interspeech , 2012 , 31 ( 43 ): 601 - 608 .
WANG P L , QIAN Y , SOONG F K , et al . A unified tagging solution:bidirectional LSTM recurrent neural network with word embedding [J ] . arXiv:1511.00215v1[cs.CL] , 2015 .
HUANG Z H , XU W , YU K . Bidirectional LSTM-CRF models for sequence tagging [J ] . arXiv:1508.01991v1[cs.CL] , 2015 .
WANG L,LUÍS T , MARUJO L , et al . Finding function in form:compositional character models for open vocabulary word representation [C ] // The 2015 Conference on Empirical Methods in Natural Language Processing . 2016 : 1520 - 1530 .
RAO A , SPASOJEVIC N . Actionable and political text classification using word embeddings and LSTM [J ] . arXiv:1607.02501v1[cs.CL] , 2016 .
0
浏览量
1541
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构