浏览全部资源
扫码关注微信
浙江大学工业控制技术国家重点实验室,浙江 杭州 310027
[ "孙鹏(1993-),男,湖南常德人,浙江大学博士生,主要研究方向为压缩感知、阵列信号处理、无线传感器网络。" ]
[ "李贵楠(1992-),男,江苏南通人,浙江大学硕士生,主要研究方向为阵列信号处理、无线传感器网络。" ]
[ "吴连涛(1989-),男,山东德州人,浙江大学博士生,主要研究方向为无线通信、压缩感知。" ]
[ "王智(1969-),男,满族,辽宁锦州人,博士,浙江大学副教授、博士生导师,主要研究方向为物联网、压缩感知、信息融合、目标定位与追踪。" ]
网络出版日期:2017-04,
纸质出版日期:2017-04-25
移动端阅览
孙鹏, 李贵楠, 吴连涛, 等. 基于双层压缩感知的有损无线链路稀疏信号传输[J]. 通信学报, 2017,38(4):120-128.
Peng SUN, Gui-nan LI, Lian-tao WU, et al. Sparse signal transmission under lossy wireless links based on double process of compressive sensing[J]. Journal on communications, 2017, 38(4): 120-128.
孙鹏, 李贵楠, 吴连涛, 等. 基于双层压缩感知的有损无线链路稀疏信号传输[J]. 通信学报, 2017,38(4):120-128. DOI: 10.11959/j.issn.1000-436x.2017074.
Peng SUN, Gui-nan LI, Lian-tao WU, et al. Sparse signal transmission under lossy wireless links based on double process of compressive sensing[J]. Journal on communications, 2017, 38(4): 120-128. DOI: 10.11959/j.issn.1000-436x.2017074.
在资源受限的无线传感器网络中,低质量的无线链路严重限制了其大规模应用。基于WSN监测信号普遍具有的稀疏特性,提出了基于双层压缩感知(double process of compressive sensing)的有损无线链路稀疏信号传输架构,探索低质量无线链路下实时、高精度和高能效的稀疏信号传输方法。首先,将稀疏信号传输过程中的随机分组丢失现象建模为压缩感知的线性降维观测过程(被动CS过程)。然后,针对WSN为提高传输效率而采用的长数据分组,数据发送前在发送端引入线性随机降维投影——简易的信源编码操作(主动CS过程),避免块状数据丢失的发生。最后,接收端根据收到的有损数据利用压缩感知的方法重构原始信号。进一步根据压缩感知重构和无线通信的相关原理,推导出允许使用的发送端最小压缩率和最大分组长度。大量仿真实验表明,所提方法不仅可以保证数据的可靠准确传输,还能减小发送数据量,降低传输时延和节点能耗。
In resource-limited wireless sensor networks
links with poor quality hinder its large-scale applications seriously.Thanks to the inherent sparse property of signals in WSN
the framework of sparse signal transmission based on double process of compressive sensing was proposed
providing an insight into a new way of real-time
accurate and energy-efficient sparse signal transmission.Firstly
the random packet loss during transmission under lossy wireless links was modeled as a linear dimension-reduced measurement process of CS (a passive process of CS).Then
considering that a large packet was often adopted in WSN for higher transmission efficiency
a random linear dimension-reduced projection (a simple source coding operation) was employed at the sender node (an active process of CS) to prevent block data loss.Now
the raw signal could be recovered from the lossy data at the receiver node using CS reconstruction algorithms.Furtherly
according to the theory of CS reconstruction and the formula of packet reception rate in wireless communication
the minimum compression ratio and the maximum packet length allowed were obtained.Extensive simulations demonstrate that the reliability of data transmission and its accuracy
the data transmission volume
the transmission delay and energy consumption could be greatly optimized by means of proposed method.
BACCOUR N , ANIS A , et al . Radio link quality estimation in wireless sensor networks:a survey [J ] . ACM Transactions on Sensor Networks , 2012 , 8 ( 4 ): 688 - 688 .
SRINIVASAN K , KAZANDJIEVA M A , AGARWAL S , et al . The β-factor:measuring wireless link burstiness [C ] // International Conference on Embedded Networked Sensor Systems (SENSYS) . Raleigh,NC,USA , 2008 : 29 - 42 .
STEVENSON L , . Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks [C ] // International Conference on Information Processing in Sensor Networks (IPSN) . Stockholm,Sweden , 2010 : 303 - 314 .
CHARBIWALA Z , CHAKRABORTY S , ZAHEDI S , et al . Compressive oversampling for robust data transmission in sensor networks [J ] . Proc of IEEE INFOCOM , 2010 , 11 ( 4 ): 1 - 9 .
田真 , 袁东风 , 梁泉泉 . 无线传感器网络差错控制技术的能效分析 [J ] . 通信学报 , 2008 , 29 ( 11 ): 77 - 83 .
TIAN Z , YUAN D F , LIANG Q Q . Comparison of error control schemes in wireless sensor networks [J ] . Journal on Communications , 2008 , 29 ( 11 ): 77 - 83 .
WOO A , TONG T , CULLER D . Taming the underlying challenges of reliable multihop routing in sensor networks [C ] // International Conference on Embedded Networked Sensor Systems . Los Angeles,California,USA , 2003 : 14 - 27 .
戴琼海 , 付长军 , 季向阳 , 等 . 压缩感知研究 [J ] . 计算机学报 , 2011 , 34 ( 3 ): 425 - 434 .
DAI Q H , FU C J , JI X Y , et al . Research on compressed sensing [J ] . Chinese Journal of Computers , 2011 , 34 ( 3 ): 425 - 434 .
LI S C , XU L D , WANG X H . Compressed sensing signal and data acquisition in wireless sensor networks and internet of things [J ] . IEEE Transactions on Industrial Informatics , 2013 , 9 ( 4 ): 2177 - 2186 .
CANDÈS E J , ROMBERG J , TAO T . Stable signal recovery from incomplete and inaccurate measurements [J ] . Communications on Pure& Applied Mathematics , 2005 , 19 ( 5 ): 410 - 412 .
CANDES E J , ROMBERG J , TAO T . Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information [J ] . IEEE Transactions on Information Theory , 2004 , 52 ( 2 ): 489 - 509 .
BAJWA W , HAUPT J , SAYEED A , et al . Compressive wireless sensing [C ] // International Conference on Information Processing in Sensor Networks (IPSN) . Nashville,Tennessee,USA , 2006 : 134 - 142 .
KONG L , XIA M , LIU X Y , et al . Data loss and reconstruction in sensor networks [C ] // Proc of IEEE INFOCOM . Turin,Italy , 2013 : 1654 - 1662 .
LUO C , WU F , SUN J , et al . Compressive data gathering for large-scale wireless sensor networks [C ] // International Conference on Mobile Computing and Networking(MOBICOM) . Beijing,China , 2009 : 145 - 156 .
FAZEL F , FAZEL M , STOJANOVIC M . Random access compressed sensing for energy-efficient underwater sensor networks [J ] . IEEE Journal on Selected Areas in Communications , 2011 , 29 ( 8 ): 1660 - 1670 .
张策 , 张霞 , 李鸥 , 等 . 不可靠链路下基于压缩感知的WSN数据收集算法 [J ] . 通信学报 , 2016 , 37 ( 9 ): 131 - 141 .
ZHANG C , ZHANG X , LI O , et al . Compressive sensing based data gathering algorithm over unreliable links in WSN [J ] . Journal on Communications , 2016 , 37 ( 9 ): 131 - 141 .
WU L T , YU K , CAO D Y , et al . Efficient sparse signal transmission over a lossy link using compressive sensing [J ] . Sensors , 2015 , 15 ( 8 ): 19880 - 19911 .
WU X , YANG P , JUNG T , et al . Compressive sensing meets unreliable link:sparsest random scheduling for compressive data gathering in lossy WSNs [C ] // ACM International Symposium on Mobile Ad Hoc Networking and Computing . Philadelphia,PA,USA , 2014 : 13 - 22 .
0
浏览量
517
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构