浏览全部资源
扫码关注微信
中国民航大学计算机科学与技术学院,天津 300300
[ "杨宏宇(1969-),男,吉林长春人,博士,中国民航大学教授,主要研究方向为网络信息安全。" ]
[ "徐晋(1991-),男,安徽合肥人,中国民航大学硕士生,主要研究方向为移动安全。" ]
网络出版日期:2017-04,
纸质出版日期:2017-04-25
移动端阅览
杨宏宇, 徐晋. 基于改进随机森林算法的Android恶意软件检测[J]. 通信学报, 2017,38(4):8-16.
Hong-yu YANG, Jin XU. Android malware detection based on improved random forest[J]. Journal on communications, 2017, 38(4): 8-16.
杨宏宇, 徐晋. 基于改进随机森林算法的Android恶意软件检测[J]. 通信学报, 2017,38(4):8-16. DOI: 10.11959/j.issn.1000-436x.2017073.
Hong-yu YANG, Jin XU. Android malware detection based on improved random forest[J]. Journal on communications, 2017, 38(4): 8-16. DOI: 10.11959/j.issn.1000-436x.2017073.
针对随机森林(RF
random forest)算法的投票原则无法区分强分类器与弱分类器差异的缺陷,提出一种加权投票改进方法,在此基础上,提出一种检测 Android 恶意软件的改进随机森林分类模型(IRFCM
improved random forest classification model)。IRFCM选取AndroidManifest.xml文件中的Permission信息和Intent信息作为特征属性并进行优化选择,然后应用该模型对最终生成的特征向量进行检测分类。Weka 环境下的实验结果表明IRFCM具有较好的分类精度和分类效率。
Aiming at the defect of vote principle in random forest algorithm which is incapable of distinguishing the differences between strong classifier and weak classifier
a weighted voting improved method was proposed
and an improved random forest classification (IRFCM) was proposed to detect Android malware on the basis of this method.The IRFCM chose Permission information and Intent information as attribute features from AndroidManifest.xml files and optimized them
then applied the model to classify the final feature vectors.The experimental results in Weka environment show that IRFCM has better classification accuracy and classification efficiency.
张怡婷 , 张扬 , 张涛 , 等 . 基于朴素贝叶斯的 Android 软件恶意行为智能识别 [J ] . 东南大学学报:自然科学版 , 2015 , 45 ( 2 ): 224 - 230 .
ZHANG Y T , ZHANG Y , ZHANG T , et al . Intelligent identification of malicious behavior in Android applications based on naive Bayes [J ] . Journal of Southeast University:Natural Science Edition , 2015 , 45 ( 2 ): 224 - 230 .
张锐 , 杨吉云 . 基于权限相关性的 Android 恶意软件检测 [J ] . 计算机应用 , 2014 , 34 ( 5 ): 1322 - 1325 .
ZHANG R , YANG J Y . Android malware detection based on permission correlation [J ] . Journal of Computer Applications , 2014 , 34 ( 5 ): 1322 - 1325 .
许艳萍 , 伍淳华 , 侯美佳 , 等 . 基于改进朴素贝叶斯的 Android 恶意应用检测技术 [J ] . 北京邮电大学学报 , 2016 , 39 ( 2 ): 43 - 47 .
XU Y P , WU C H , HOU M J , et al . Android malware detection technology based on improved naive Bayesian [J ] . Journal of Beijing University of Posts and Telecommunications , 2016 , 39 ( 2 ): 43 - 47 .
LI W , GE J , DAI G . Detecting malware for Android platform:an svm-based approach [C ] // IEEE,International Conference on Cyber Security and Cloud Computing . New Jersey,USA:IEEE , 2015 : 464 - 469 .
FEIZOLLAH A , ANUAR N B , SALLEH R , et al . Comparative study of k-means and mini batch k-means clustering algorithms in Android malware detection using network traffic analysis [C ] // International Symposium on Biometrics and Security Technologies . New Jersey,USA:IEEE , 2014 : 193 - 197 .
YUAN Z , LU Y , XUE Y . Droid detector:Android malware characterization and detection using deep learning [J ] . Tsinghua Science &Technology , 2016 , 21 ( 1 ): 114 - 123 .
文伟平 , 梅瑞 , 宁戈 , 等 . Android恶意软件检测技术分析和应用研究 [J ] . 通信学报 , 2014 , 35 ( 8 ): 78 - 85 .
WEN W P , MEI R , NING G , et al . Malware detection technology analysis and applied research of Android platform [J ] . Journal on Communications , 2014 , 35 ( 8 ): 78 - 85 .
杨欢 , 张玉清 , 胡予濮 , 等 . 基于多类特征的 Android 应用恶意行为检测系统 [J ] . 计算机学报 , 2014 , 37 ( 1 ): 15 - 27 .
YANG H , ZHANG Y Q , HU Y P , et al . A malware behavior detection system of Android applications based on multi-class features [J ] . Chinese Journal of Computers , 2014 , 37 ( 1 ): 15 - 27 .
FEIZOLLAH A , ANUAR N B , SALLEH R , et al . A review on feature selection in mobile malware detection [J ] . Digital Investigation , 2015 , 6 ( 13 ): 22 - 37 .
SHARMA A , DASH S K . Mining API calls and permissions for android malware detection [M ] . Cryptology and Network Security . Berlin,Germany : Springer International PublishingPress , 2014 : 191 - 205 .
YANG X L . Malicious detection based on ReliefF and boosting multidimensional features [J ] . Journal of Communications , 2015 , 10 ( 11 ): 910 - 917 .
ROBNIKŠIKONJA M , KONONENKO I . Theoretical and empirical analysis of ReliefF and RReliefF [J ] . Machine Learning , 2003 , 53 ( 1 ): 23 - 69 .
BREIMAN L . Random forest [J ] . Machine Learning , 2001 , 5 ( 1 ): 5 - 32 .
ALAM M S , VUONG S T . Random forest classification for detecting android malware [C ] // Green Computing and Communications . 2013 : 663 - 669 .
丰生强 . Android软件安全与逆向分析 [M ] . 北京 : 人民邮电出版社 , 2013 .
FENG S Q . Android software security and reverse analysis [M ] . Beijing : PTPRESSPress , 2013 .
JIANG X , ZHOU Y . Dissecting Android malware:characterization and evolution [C ] // IEEE Symposium on Security & Privacy . New Jersey,USA:IEEE , 2012 : 95 - 109 .
0
浏览量
1459
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构