浏览全部资源
扫码关注微信
1. 哈尔滨工程大学计算机科学与技术学院,黑龙江 哈尔滨 150001
2. 哈尔滨理工大学计算机科学与技术学院,黑龙江 哈尔滨 150080
3. 哈尔滨理工大学计算机科学与技术学院博士后流动站,黑龙江 哈尔滨 150080
[ "迟荣华(1981-),男,黑龙江哈尔滨人,哈尔滨工程大学博士生,主要研究方向为复杂网络、不确定性研究等。" ]
[ "程媛(1985-),女,黑龙江哈尔滨人,哈尔滨理工大学讲师,主要研究方向为数据挖掘、不确定性研究等。" ]
[ "朱素霞(1978-),女,山东寿光人,哈尔滨理工大学副教授,主要研究方向为高性能体系结构、并行计算。" ]
[ "黄少滨(1965-),男,黑龙江哈尔滨人,哈尔滨工程大学教授、博士生导师,主要研究方向为分布式计算与仿真、模型检测、数据集成等。" ]
[ "陈德运(1962-),男,黑龙江哈尔滨人,哈尔滨理工大学教授、博士生导师,主要研究方向为图像处理、探测和成像技术。" ]
网络出版日期:2017-03,
纸质出版日期:2017-03-15
移动端阅览
迟荣华, 程媛, 朱素霞, 等. 基于快速高斯变换的不确定数据聚类算法[J]. 通信学报, 2017,38(3):101-111.
Rong-hua CHI, Yuan CHENG, Su-xia ZHU, et al. Uncertain data analysis algorithm based on fast Gaussian transform[J]. Journal on communications, 2017, 38(3): 101-111.
迟荣华, 程媛, 朱素霞, 等. 基于快速高斯变换的不确定数据聚类算法[J]. 通信学报, 2017,38(3):101-111. DOI: 10.11959/j.issn.1000-436x.2017061.
Rong-hua CHI, Yuan CHENG, Su-xia ZHU, et al. Uncertain data analysis algorithm based on fast Gaussian transform[J]. Journal on communications, 2017, 38(3): 101-111. DOI: 10.11959/j.issn.1000-436x.2017061.
数据中不确定性的存在使对其聚类分析时要充分考虑不确定性的影响。针对现有不确定数据聚类算法中构建不确定数据模型以及距离度量时存在的影响结果准确性与聚类性能等问题,提出一种基于快速高斯变换的不确定数据聚类算法。首先在不假设数据分布的前提下,构建符合不确定性分布特征的数据模型;然后结合不确定对象的2个重要特征:属性特征与表示不确定数据分布特征的概率密度函数,度量不确定数据对象间的相似性;并以此为基础提出不确定数据聚类算法;最后在UCI以及真实数据集上的实验结果表明,所提算法在运行效率和聚类准确性方面均能取得较好效果。
The effect of the uncertainties needs to be taken full advantage during uncertain data clustering.An uncertain data clustering algorithm based on fast Gaussian transform was proposed
to solve the problems about the impact on the accuracy of clustering results and the clustering efficiency caused by the uncertainties
during the construction of uncertain data models and the distance measurement
which existed in the current researches.First
the data model according to the characteristic of the uncertainty distribution was constructed
without the premise of assuming the data distribution.And the similarity between uncertain data objects was measured by combining the two important features of uncertain objects
attribute features and the probability density function representing the characteristic of uncertainty distribution.And then the uncertain data clustering algorithm was proposed.Finally
the experiment results on UCI and real datasets indicate the better efficiency and accuracy of proposed algorithm.
WANG Y , LI X , LI X , et al . A survey of queries over uncertain data [J ] . Knowledge and Information Systems , 2013 , 37 ( 3 ): 485 - 530 .
SEN P , DESHPANDE A . Representing and querying correlated tuples in probabilistic databases [C ] // IEEE 23rd International Conference on Data Engineering . Istanbul,Turkey,IEEE , 2007 : 596 - 605 .
MUZAMMAL M , RAMAN R . Mining sequential patterns from probabilistic databases [J ] . Knowledge and Information Systems , 2015 , 44 ( 2 ): 325 - 358 .
SOLIMAN M , ILYAS I , CHANG K . Top-k query processing in uncertain databases [C ] // IEEE 23rd International Conference on Data Engineering . Istanbul,Turkey,IEEE , 2007 : 896 - 905 .
AGGARWAL C . Managing and mining uncertain data [M ] . USA : SpringerPress , 2009 : 1 - 35 .
BARBARÁ D , GARCIA-MOLINA H , PORTER D . The management of probabilistic data [J ] . IEEE Transactions on Knowledge and Data Engineering , 1992 , 4 ( 5 ): 487 - 502 .
ANTOVA L , JANSEN T , KOCH C , et al . Fast and simple relational processing of uncertain data [C ] // IEEE 24th International Conference on Data Engineering . Cancun,Mexico,IEEE , 2008 : 983 - 992 .
TANG R , CHENG R , WU H , et al . A framework for conditioning uncertain relational data [J ] . Database and Expert Systems Applications , 2012 , 37 ( 3 ): 71 - 87 .
TASKAR B , SEGAL E , KOLLER D . Probabilistic classification and clustering in relational data [C ] // The Seventeenth International Joint Conference on Artificial Intelligence.San Francisco,USA:Morgan Kaufmann Publishers Inc . 2001 : 870 - 878 .
NGAI W K , KAO B , CHUI C K , et al . Efficient clustering of uncertain data [C ] // The Sixth International Conference on Data Mining . 2006 : 436 - 445 .
KRIEGEL H , PFEIFLE M . Density-based clustering of uncertain data [C ] // The 11st ACM SIGKDD International Conference on Knowledge Discovery in Data Mining . Chicago,USA:ACM , 2005 : 672 - 677 .
KRIEGEL H , PFEIFLE M . Hierarchical density-based clustering of uncertain data [C ] // Fifth IEEE International Conference on Data Mining . Houston,USA,IEEE , 2005 : 689 - 692 .
李云飞 , 王丽珍 , 周丽华 . 不确定数据的高效聚类算法 [J ] . 广西师范大学学报:自然科学版 , 2011 , 29 ( 2 ): 161 - 166 .
LI Y F , WANG L Z , ZHOU L H . More efficient clustering algorithm over uncertain data [J ] . Journal of Guangxi Normal University (Natural Science Edition) , 2011 , 29 ( 2 ): 161 - 166 .
金萍 , 宗瑜 , 屈世超 , 等 . 面向不确定数据的近似骨架启发式聚类算法 [J ] . 南京大学学报 (自然科学) , 2015 , 51 ( 1 ): 197 - 205 .
JIN P , ZONG Y , QU S C , et al . Approximate backbone guided heuristic clustering algorithm for uncertain data [J ] . Journal of Nanjing University (Natural Sciences) , 2015 , 51 ( 1 ): 197 - 205 .
肖宇鹏 , 何云斌 , 万静 , 等 . 基于模糊 C-均值的空间不确定数据聚类 [J ] . 计算机工程 , 2015 , 41 ( 10 ): 47 - 52 .
XIAO Y P , HE Y B , WAN J , et al . Clustering of space uncertain data based on fuzzy C-means [J ] . Computer Engineering , 2015 , 41 ( 10 ): 47 - 52 .
CORMODE G , MCGREGOR A . Approximation algorithms for clustering uncertain data [C ] // The 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems . Vancouver,Canada,ACM , 2008 : 191 - 200 .
ZÜFLE A , EMRICH T , SCHMID K A , et al . Representative clustering of uncertain data [C ] // The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York,USA,ACM , 2014 : 243 - 252 .
SCHUBERT E , KOOS A , EMRICH T , et al . A framework for clustering uncertain data [C ] // The 41st International Conference on Very Large Data Bases . Hawaii,USA,VLDB Endowment , 2015 : 1976 - 1979 .
XU L , HU Q , HUNG E , et al . Large margin clustering on uncertain data by considering probability distribution similarity [J ] . Neurocomputing , 2015 , 158 : 81 - 89 .
JIANG B , PEI J , TAO Y , et al . Clustering uncertain data based on probability distribution similarity [J ] . IEEE Transactions on Knowledge and Data Engineering , 2013 , 25 ( 4 ): 751 - 763 .
LÓPEZ-RUBIO E , JOSE . Probability densty function estimation with the frequency polygon transform [J ] . Information Science , 2015 , 298 : 136 - 158 .
ELGAMMAL A , DURAISWAMI R , DAVIS L S . Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2003 , 25 ( 11 ): 1499 - 1504 .
SCOTT D . On optimal and data-based histograms [J ] . Biometrika , 1979 , 66 ( 3 ): 605 - 610 .
GREENGARD L , STRAIN J . The fast Gauss transform [J ] . SIAM Journal on Scientific and Statistical Computing , 1991 , 12 ( 1 ): 79 - 94 .
YANG C , DURAISWAMI R , GUMEROV N , et al . Improved fast gauss transform and efficient kernel density estimation [C ] // Ninth IEEE International Conference on Computer Vision . Nice,France:IEEE , 2003 : 664 - 671 .
ZHAO Y , KARYPIS G . Criterion functions for document clustering:experiment and analysis [R ] . Technical Report TR 01-40,Department of Computer Science,University of Minnesota,USA , 2001 .
MANNING C D , RAGHAVAN P , SCHUTZE H ,著. 王斌 ,译 信息检索导论 [M ] . 北京 : 人民邮电出版社 , 2010 .
MANNING C D , RAGHAVAN P , SCHUTZE H.WANG B,translate WANG B ,translate. Introduction to information retrieval [M ] . Beijing : PTPRESS , 2010 .
DEMSAR J . Statistical comparisons of classifiers over multiple data sets [J ] . Journal of Machine Learning Research , 2006 ( 7 ): 1 - 30 .
ARBELAITZ O , GURRUTXAGA I , MUGUERZA J , et al . An extensive comparative study of cluster validity indices [J ] . Pattern Recognition , 2013 , 46 ( 1 ): 243 - 256 .
0
浏览量
855
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构