浏览全部资源
扫码关注微信
1. 中南民族大学电子信息工程学院智能无线通信湖北省重点实验室,湖北 武汉 430074
2. 中南民族大学计算机科学学院,湖北 武汉 430074
[ "李佳(1991-),女,湖北孝感人,中南民族大学硕士生,主要研究方向为图像复原、压缩感知。" ]
[ "高志荣(1972-),女,湖北仙桃人,中南民族大学副教授,主要研究方向为图像处理与识别、压缩感知。" ]
[ "熊承义(1969-),男,湖南临澧人,中南民族大学教授、硕士生导师,主要研究方向为图像与视频编码、图像分类与识别。" ]
[ "周城(1979-),男,湖北武汉人,中南民族大学讲师、硕士生导师,主要研究方向为视频编码与通信。" ]
网络出版日期:2017-02,
纸质出版日期:2017-02-25
移动端阅览
李佳, 高志荣, 熊承义, 等. 加权结构组稀疏表示的图像压缩感知重构[J]. 通信学报, 2017,38(2):196-202.
Jia LI, Zhi-rong GAO, Cheng-yi XIONG, et al. Image compressive sensing recovery based on weighted structure group sparse representation[J]. Journal on communications, 2017, 38(2): 196-202.
李佳, 高志荣, 熊承义, 等. 加权结构组稀疏表示的图像压缩感知重构[J]. 通信学报, 2017,38(2):196-202. DOI: 10.11959/j.issn.1000-436x.2017041.
Jia LI, Zhi-rong GAO, Cheng-yi XIONG, et al. Image compressive sensing recovery based on weighted structure group sparse representation[J]. Journal on communications, 2017, 38(2): 196-202. DOI: 10.11959/j.issn.1000-436x.2017041.
利用图像的非局部相似性先验以提升图像恢复质量已得到广泛关注。为了更有效地提升压缩感知(CS)图像的重构质量,提出了一种基于加权结构组稀疏表示(WSGSR)的图像压缩感知重构方法。采用非局部相似图像块结构组加权稀疏表示的
<math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi mathvariant="script">l</mi> <mn>1</mn> </msub> </math>
范数作为规则化项约束优化重构,实现在更好地恢复图像高频细节信息的同时有效减少对图像低频成分的损失,图像重构质量得到明显改善。推导出一种加权软阈值收缩方法,实现对模型的优化求解,对幅值较大的重要系数采用较小的阈值收缩处理,对幅值较小的非重要系数采用相对较大的阈值收缩处理。实验结果比较验证了所提方法的有效性。
Non-local similarity prior has been widely paid attention to efficiently improve image recovery quality.To fur-ther improve the recovered image quality for compressive sensing (CS)
an image compressive sensing recovery method based on reweighted structure group sparse representation (WSGSR) was proposed.
<math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi mathvariant="script">l</mi> <mn>1</mn> </msub> </math>
-norm of WSGSR of image non-local similar patch group was used as a regularization term to optimize reconstruction
which achieved well reserving image high-frequency detail with less loss of image low-frequency component
and thus considerably improve the recon-structed image quality.A reweighted soft thresholding shrinkage method was deduced to achieve optimization solution
in which the significant coefficient with large magnitude value was shrunk by a small threshold
while the non-significant coefficient with small magnitude value was shrunk by a relative large threshold.Experimental results comparison demon-strate the effectiveness of the proposed method.
DONOHO D . Compressive sensing [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
BARANIUK R . Compressive sensing [J ] . IEEE Signal Processing Magazine , 2007 , 24 ( 4 ): 118 - 120 .
焦李成 , 杨淑媛 , 刘芳 . 压缩感知回顾与展望 [J ] . 电子学报 , 2011 , 39 ( 7 ): 1651 - 1662 .
JIAO L C , YANG S Y , LIU F . Development and prospect of compressive sensing [J ] . Acta Electronica Sinica , 2011 , 39 ( 7 ): 1651 - 1662 .
刘磊 , 张建军 , 陆阳 , 等 . 依赖连通度的压缩感知多目标定位方法 [J ] . 通信学报 , 2016 , 37 ( 5 ): 152 - 164 .
LIU L , ZHANG J J , LU Y , et al . Multiple targets localization via compressive sensing from mere connectivity [J ] . Journal on Communications , 2016 , 37 ( 5 ): 152 - 164 .
CANDES E . The restricted isometry property and its implications for compressed sensing [J ] . Comptes Rendus Mathematique , 2008 , 346 ( 9 ): 589 - 592 .
MUN S , FOWLER J E . Block compressed sensing of images using directional transforms [C ] // IEEE International Conference on Image Processing . Cairo,Egypt:IEEE Press , 2009 . 3021 - 3024 .
HE L , CARIN L . Exploiting structure in wavelet-based bayesian compressive sensing [J ] . IEEE Transactions on Signal Processing , 2009 , 57 ( 9 ): 3488 - 3497 .
LI C , YIN W , ZHANG Y , et al . TVAL3:TV minimization by augmented Lagrangian and alternating direction algorithms [EB/OL ] . http://www.caam.rice.edu/optimization/L1/TVAL3/ http://www.caam.rice.edu/optimization/L1/TVAL3/ .
ZHANG Z , ZHAO C , GAO W . Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization [J ] . Signal Processing , 2014 , 103 : 114 - 126 .
陈建 , 苏凯雄 , 杨秀芝 , 等 . 基于变分模型的块压缩感知重构算法 [J ] . 通信学报 , 2016 , 37 ( 1 ): 100 - 109 .
CHEN J , SU K X , YANG X Z , et al . Reconstruction algorithm for block compressed sensing based on variation model [J ] . Journal on Communications , 2016 , 37 ( 1 ): 100 - 109 .
BUADES A , COLL B , MOREL J M . A non-local algorithm for image denoising [C ] // In Proc Int Conf CVPR . 2005 : 60 - 65 .
ZHANG K , GAO X , TAO D . Single image super-resolution with non-local means and steering kernel regression [J ] . IEEE Transactions on Image Processing , 2012 , 21 ( 11 ): 4544 - 4556 .
ZHANG J , ZHAO D , ZHAO C . Image compressive sensing recovery via collaborative sparsity [J ] . IEEE J Emerg Sel Topics Circuits Syst , 2012 , 2 ( 3 ): 380 - 391 .
ZHANG J , ZHAO D , JIANG F . Structural group sparse representation for image compressive sensing recovery [C ] // IEEE DCC . Snowbird,UT,USA , 2013 : 331 - 340 .
沈燕飞 , 朱珍民 , 张勇东 . 基于秩极小化的压缩感知图像恢复算法 [J ] . 电子学报 , 2016 , 44 ( 3 ): 572 - 579 .
SHEN Y F , ZHU Z M , ZHANG Y D . Compressed sensing image reconstruction algorithm based on rank minimization [J ] . Acta Electronica Sinica , 2016 , 44 ( 3 ): 572 - 579 .
AFONSO M,BIOUCAS-DIAS J , FIGUEIREDO M . Fast image recovery using variable splitting and constrained optimization [J ] . IEEE Transactions on Image Processing , 2010 , 19 ( 9 ): 2345 - 2356 .
BOYD S , PARIKH N , CHU E . Distributed optimization and statistical learning via the alternating direction method of multipliers [J ] . Found,Treads Mach Learn , 2011 , 3 ( 1 ): 1 - 122 .
GOLDSTEIN T , OSHER S . The split Bregman algorithm for L1 regularized problems [J ] . SIAM J Imag Sci , 2009 , 2 ( 2 ): 323 - 343 .
CHEN C , TRAMEL E W . Compressed-sensing recovery of images and video using multi-hypothesis predictions [C ] // In Proc 45th Asilomar Conf Signals,Syst,Comput Pacific Grove . CA,USA , 2011 : 1193 - 1198 .
LU G , . Block compressed sensing of natural images [C ] // International Conference on Digital Signal Processing . Cardiff,UK:IEEE , 2007 : 403 - 406 .
0
浏览量
745
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构