浏览全部资源
扫码关注微信
解放军信息工程大学,河南 郑州 450001
[ "裴立业(1987-),男,河北石家庄人,解放军信息工程大学博士生,主要研究方向为通信信号处理、频谱感知。" ]
[ "江桦(1956-),男,江苏南通人,解放军信息工程大学教授、博士生导师,主要研究方向为通信信号处理、认知无线电。" ]
[ "麻曰亮(1992-),男,吉林长春人,解放军信息工程大学硕士生,主要研究方向为压缩感知、信号检测。" ]
网络出版日期:2017-02,
纸质出版日期:2017-02-25
移动端阅览
裴立业, 江桦, 麻曰亮. 基于选择性测量的压缩感知去噪重构算法[J]. 通信学报, 2017,38(2):106-114.
Li-ye PEI, Hua JIANG, Yue-liang MA. Denoising recovery for compressive sensing based on selective measure[J]. Journal on communications, 2017, 38(2): 106-114.
裴立业, 江桦, 麻曰亮. 基于选择性测量的压缩感知去噪重构算法[J]. 通信学报, 2017,38(2):106-114. DOI: 10.11959/j.issn.1000-436x.2017033.
Li-ye PEI, Hua JIANG, Yue-liang MA. Denoising recovery for compressive sensing based on selective measure[J]. Journal on communications, 2017, 38(2): 106-114. DOI: 10.11959/j.issn.1000-436x.2017033.
针对压缩感知中噪声折叠现象严重影响稀疏信号重构性能的问题,提出一种基于选择性测量的压缩感知去噪重构算法。首先从理论上解释了压缩感知中噪声折叠现象;然后提出一种基于测量数据的特征统计量,推导分析其概率密度函数,并基于此构造一种噪声滤波矩阵,用于优化测量矩阵,实现智能地选择信号分量、过滤噪声分量,提高测量数据信噪比;最后,通过增加测量数据获取次数可进一步提升算法重构性能。仿真实验表明,基于选择性测量的压缩感知去噪重构算法明显改善了低信噪比条件下信号的重构性能。
In order to reduce the effect of noise folding (NF) phenomenon on the performance of sparse signal recon-struction
a new denoising recovery algorithm based on selective measure was proposed.Firstly
the NF phenomenon in compressive sensing (CS) was explained in theory.Secondly
a new statistic based on compressive measurement data was proposed
and its probability density function (PDF) was deduced and analyzed.Then a noise filter matrix was constructed based on the PDF to guide the optimization of measurement matrix.The optimized measurement matrix can selectively sense the sparse signal and suppress the noise to improve the SNR of the measurement data
resulting in the improvement of sparse reconstruction performance.Finally
it was pointed out that increasing the measurement times can further enhance the performance of denoising reconstruction.Simulation results show that the proposed denoising recon-struction algorithm has a better improvement in the performance of reconstruction of noisy signal
especially under low SNR.
SUN H , NALLANATHAN A , WANG C X , et al . Wideband spectrum sensing for cognitive radio networks :a survey [J ] . IEEE Wireless Communications , 2013 , 20 ( 2 ): 74 - 81 .
CANDÈS E J , WAKIN M N . An introduction to compressive sampling [J ] . IEEE Signal Processing Magazine , 2008 , 25 ( 2 ): 21 - 30 .
DONOHO D L . Compressed sensing [J ] . IEEE Trans on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
焦李成 , 杨淑媛 , 刘芳 , 等 . 压缩感知回顾与展望 [J ] . 电子学报 , 2011 , 39 ( 7 ): 1561 - 1662 .
JIAO L C , YANG S Y , LIU F , et al . Development and prospect of compressive sensing [J ] . Acta Electronica Sinica , 2011 , 39 ( 7 ): 1561 - 1662 .
王韦刚 , 杨震 , 顾彬 . 基于观测矩阵优化的自适应压缩频谱感知 [J ] . 通信学报 , 2014 , 35 ( 8 ): 33 - 39 .
WANG W G , YANG Z , GU B . Adaptive compressed spectrum sensing based on optimized measurement matrix [J ] . Journal on Communications , 2014 , 35 ( 8 ): 33 - 39 .
田文飚 , 付争 , 芮国胜 . 基于分治试探的盲自适应匹配追踪重构算法 [J ] . 通信学报 , 2013 , 34 ( 4 ): 180 - 186 .
TIAN W B , FU Z , RUI G S . Blind adaptive matching pursuit algorithm for signal reconstruction based on sparsity trial and error [J ] . Journal on Communications , 2013 , 34 ( 4 ): 180 - 186 .
JIN S , ZHANG X . An efficient method for collaborative compressive spectrum sensing in cognitive radio networks [C ] // IEEE Global Communications Conference . 2014 : 834 - 839 .
ZHAO H H , WANG Y N , PENG X J , et al . Gradientbased compressive sensing for noise image and video reconstruction [J ] . IET Communications , 2015 , 9 ( 7 ): 940 - 946 .
KRAHMER F , WARD R . Stable and robust sampling strategies for compressive imaging [J ] . IEEE Transactions on Image Processing , 2014 , 23 ( 2 ): 612 - 622 .
DONOHO D L , TSAIG Y . Extensions of compressed sensing [J ] . Signal Processing , 2006 , 86 ( 3 ): 533 - 548 .
CANDES E J , TAO T . The dantzig selector:statistical estimation when p is much larger than n [J ] . Annals of Statistics , 2007 , 35 ( 6 ): 2313 - 2353 .
NEEDELL D , VERSHYNIN R . Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matching pursuit [J ] . IEEE Journal of Selected Topics in Signal Processing , 2010 , 4 ( 2 ): 310 - 316 .
DAI W , MILENKOVIC O . Subspace pursuit for compressive sensing signal reconstruction [J ] . IEEE Transactions on Information Theory , 2009 , 55 ( 5 ): 2230 - 2249 .
NEEDELL D , TROPP J A . CoSaMP:iterative signal recovery from incomplete and inaccurate samples [J ] . Applied and Computational Harmonic Analysis , 2008 , 26 ( 3 ): 301 - 321 .
CASTRO E S , ELDAR Y C . Noise folding in compressed sensing [J ] . IEEE Signal Processing Letters , 2011 , 18 ( 8 ): 478 - 481 .
TREICHLER J , DAVENPORT M A , BARANIUK R G . Application of compressive sensing to the design of wideband signal acquisition receivers [C ] // In 6th U.S . /Australia Joint Workshop on Defense Applications of Signal Processing , 2009 .
ALMEROTH B , KRONE S , FETTWEIS G . Analyzing the signal to noise ratio of direct sampling receivers [C ] // IEEE International Conference on Communications . Budapest , 2013 : 4561 - 4565 .
PETER S , ARTINA M , FORNASIER M . Damping noise folding and enhanced support recovery in compressed sensing [J ] . IEEE Transactions on Signal Processing , 2015 , 63 ( 22 ): 5990 - 6002 .
HAUPT J , CASTRO R , NOWAK R . Distilled sensing:adaptive sampling for sparse detection and estimation [J ] . IEEE Transactions on Information Theory , 2011 , 57 ( 9 ): 6222 - 6235 .
HAUPT J , BARANIUK R , CASTRO R , et al . Compressive distilled sensing:sparse recovery using adaptivity in compressive measurements [C ] // In Proceedings of the 43rd Asilomar Conference on Signals,Systems and Computers . 2009 : 1551 - 1555 .
TROPP J , GILBERT A . Signal recovery from random measurements via orthogonal matching pursuit [J ] . IEEE Transactions on Information Theory , 2007 , 53 ( 12 ): 4655 - 4666 .
WANG Y , TIAN Z , FENG C Y . Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios [J ] . IEEE Transactions on Wireless Communications , 2012 , 11 ( 6 ): 2116 - 2125 .
0
浏览量
944
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构