浏览全部资源
扫码关注微信
1. 西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
2. 中国科学院大学国家计算机网络入侵防范中心,北京 101408
[ "田叶(1987-),女,山西平遥人,西安电子科技大学博士生,主要研究方向为布尔函数、序列密码的分析与构造。" ]
[ "张玉清(1966-),男,陕西宝鸡人,中国科学院大学教授、博士生导师,主要研究方向为网络与信息系统安全。" ]
[ "胡予濮(1955-),男,河南濮阳人,西安电子科技大学教授、博士生导师,主要研究方向为序列密码与分组密码、网络安全协议的设计与分析。" ]
网络出版日期:2017-02,
纸质出版日期:2017-02-25
移动端阅览
田叶, 张玉清, 胡予濮. 最小距离为4的最优五元循环码[J]. 通信学报, 2017,38(2):74-80.
Ye TIAN, Yu-qing ZHANG, Yu-pu HU. Optimal quinary cyclic codes with minimum distance four[J]. Journal on communications, 2017, 38(2): 74-80.
田叶, 张玉清, 胡予濮. 最小距离为4的最优五元循环码[J]. 通信学报, 2017,38(2):74-80. DOI: 10.11959/j.issn.1000-436x.2017030.
Ye TIAN, Yu-qing ZHANG, Yu-pu HU. Optimal quinary cyclic codes with minimum distance four[J]. Journal on communications, 2017, 38(2): 74-80. DOI: 10.11959/j.issn.1000-436x.2017030.
循环码是线性分组码中最重要的一个子类,由于其具有代数结构清晰、编译码简单且易于实现,被广泛地应用于通信系统和储存设备中。目前,大部分已有的研究工作最多只能实现三元最优循环码,对五元循环码的研究工作较少。对一类五元最优循环码C
(1
e
t)
进行研究。首先,给出一种有效且快速判断五元循环码C
(1
e
t)
是否最优的方法;其次,基于提出的方法得到当e=5
k
+1及e=5
m
−2时,循环码C
(1
e
t)
为最优循环码;最后,基于有限域
<math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>5</mn> <mi>m</mi> </msup> </mrow> </msub> </math>
中的完全非线性函数,构造一类具有参数[5
m
−1
5
m
−2m−2
4
]
的五元最优循环码。
Cyclic codes are an extremely important subclass of linear codes.They are widely used in the communication systems and data storage systems because they have efficient encoding and decoding algorithm.Until now
how to construct the optimal ternary cyclic codes has received a lot of attention and much progress has been made.However
there is less research about the optimal quinary cyclic codes.Firstly
an efficient method to determine if cyclic codes C
(1
e
t)
were optimal codes was obtained.Secondly
based on the proposed method
when the equation e=5
k
+1 or e=5
m
−2hold
the theorem that the cyclic codes C
(1
e
t)
were optimal quinary cyclic codes was proved.In addition
perfect nonlinear monomials were used to construct optimal quinary cyclic codes with parameters[5
m
−1
5
m
−2m−2
4
]
optimal quinary cyclic codes over
<math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>5</mn> <mi>m</mi> </msup> </mrow> </msub> </math>
.
MACWILLIAMS F , SLOANE N . The theory of error-correcting codes [M ] . North Holland : ElsevierPress , 1977 .
ASSMUS E F , KEY J D . Designs and their codes [M ] . Cambridge : Cambridge University PressPress , 1992 .
MASSEY J L , . Some applications of coding theory in cryptography [C ] // Fourth the Institute of Mathematics and its Applications (IMA) Conference on Cryptography and Coding . 1995 : 33 - 47 .
HUFFMAN W , PLESS V . Fundamentals of error-correcting codes [M ] . Cambridge : Cambridge University PressPress , 2003 .
DING C . Cyclic codes from the two-prime sequences [J ] . IEEE Transactions on Information Theory , 2012 , 58 ( 6 ): 3881 - 3891 .
DING C . Cyclic codes from cyclotomic sequences of order four [J ] . Finite Fields and Their Applications , 2013 , 23 ( 96 ): 8 - 34 .
CARLET C , DING C , YUAN J . Linear codes from highly nonlinear functions and their secret sharing schemes [J ] . IEEE Transactions on Information Theory , 2005 , 51 ( 6 ): 2089 - 2102 .
DING C , HELLESETH T . Optimal ternary cyclic codes from monomials [J ] . IEEE Transactions on Information Theory , 2013 , 59 ( 9 ): 5898 - 5904 .
LI N , ZHOU Z , HELLESETH T . On a conjecture about a class of optimal ternary cyclic codes [C ] // Seventh International Workshop on Signal Design and its Applications in Communications . 2015 : 62 - 65 .
LI N , LI C , HELLESETH T , et al . Optimal ternary cyclic codes with minimum distance four and five [J ] . Finite Fields and Their Applications , 2014 , 30 ( 6 ): 100 - 120 .
LI C , LI N , HELLESETH T , et al . The weight distributions of several classes of cyclic codes from APN monomials [J ] . IEEE Transaction on Information Theory , 2014 , 60 ( 8 ): 4710 - 4721 .
XU G , CAO X , XU S . Optimal p-ary cyclic codes with minimum distance four from monomials [J ] . Cryptography and Communications , 2016 , 8 ( 4 ): 541 - 554 .
YUAN J , CARLET C , DING C . The weight distribution of a class of linear codes from perfect nonlinear functions [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 2 ): 712 - 717 .
ZHA Z , WANG X . Almost perfect nonlinear power functions in odd characteristic [J ] . IEEE Transaction on Information Theory , 2011 , 57 ( 7 ): 4826 - 4832 .
FENG K , LUO J . Value distributions of exponential sums from perfect nonlinear functions and their applications [J ] . IEEE Transactions on Information Theory , 2007 , 53 ( 9 ): 3035 - 3041 .
LI C , QU L , LING S . On the covering structures of two classes of linear codes from perfect nonlinear functions [J ] . IEEE Transactions on Information Theory , 2009 , 55 ( 1 ): 70 - 82 .
VAN LINT J . A survey of perfect codes [J ] . Journal of Mathematics , 1975 , 5 ( 2 ): 199 - 224 .
ZHOU Z , DING C . A class of three-weight cyclic codes [J ] . Finite Fields and Their Applications , 2014 , 25 : 79 - 93 .
ZHOU Z , DING C . Seven classes of three-weight cyclic codes [J ] . IEEE Transactions on Communications , 2013 , 61 ( 10 ): 4120 - 4126 .
YU L , LIU H . The weight distribution of a family of p-ary cyclic codes [J ] . Designs,Codes and Cryptography , 2016 , 78 ( 3 ): 1 - 15 .
KAGEYAMA Y , MARUTA T . On the geometric constructions of optimal linear codes [J ] . Designs,Codes and Cryptography , 2016 , 81 ( 3 ): 469 - 480 .
ZHENG D , WANG X , YU L . The weight enumerators of several classes of p-ary cyclic codes [J ] . Discrete Mathematics , 2015 , 338 ( 7 ): 1264 - 1276 .
0
浏览量
629
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构