浏览全部资源
扫码关注微信
解放军信息工程大学,河南 郑州 450001
[ "马思扬(1991-),女,浙江金华人,解放军信息工程大学硕士生,主要研究方向为通信信号处理、稀疏多径信道均衡。" ]
[ "彭华(1973-),男,江西萍乡人,博士,解放军信息工程大学教授、博士生导师,主要研究方向为通信信号处理、软件无线电。" ]
[ "王彬(1971-),女,河南郑州人,博士,解放军信息工程大学副教授、硕士生导师,主要研究方向为通信信号处理、信道均衡与辨识。" ]
网络出版日期:2017-01,
纸质出版日期:2017-01-25
移动端阅览
马思扬, 彭华, 王彬. 适用于稀疏多径信道的稀疏自适应常模盲均衡算法[J]. 通信学报, 2017,38(1):149-157.
Si-yang MA, Hua PENG, Bin WANG. Sparse adaptive constant blind equalization algorithm for sparse multipath channel[J]. Journal on communications, 2017, 38(1): 149-157.
马思扬, 彭华, 王彬. 适用于稀疏多径信道的稀疏自适应常模盲均衡算法[J]. 通信学报, 2017,38(1):149-157. DOI: 10.11959/j.issn.1000-436x.2017017.
Si-yang MA, Hua PENG, Bin WANG. Sparse adaptive constant blind equalization algorithm for sparse multipath channel[J]. Journal on communications, 2017, 38(1): 149-157. DOI: 10.11959/j.issn.1000-436x.2017017.
为了提高稀疏多径信道盲均衡器的收敛速度,提出了一种适用于多进制相移键控(MPSK
M-order phase-shift keying)信号的l
0
-范数约束的比例系数归一化最小均方常模盲均衡算法。该算法首先利用信号的常模特性和均衡器抽头系数的稀疏性,构造出基于l
0
-范数约束的稀疏常模盲均衡代价函数,然后依据梯度下降法推导出均衡器抽头系数更新公式,并对迭代步长进行归一化和比例系数化。算法为每个抽头系数分配与其当前时刻的幅度成正比的步长参数,并自适应地对幅度极小系数做向零收缩微调。理论分析和仿真实验表明,与现有稀疏多径信道盲均衡算法相比,该算法在保持较低剩余符号间干扰的同时,能有效提高均衡器的收敛速度。
In order to
improve the convergence rate of the blind equalizer for sparse multipath channel
a novel blind equalization approach called l
0
-norm constraint proportionate normalized least mean square constant algorithm was proposed for M-order phase-shift keying (MPSK) signal.Based on the constant modulus characteristics of MPSK signal and the sparse property of equalizer
a new blind equalization cost function with the l
0
-norm penalty on the equalizer tap coefficients was firstly constructed.Then the update formula of the tap coefficients was derived according to the gradient descent algorithm.Moreover
the iteration step was updated by drawing upon the normalized proportionate factor.The algorithm not only assigned step sizes proportionate to the magnitude of the current individual tap weights
but also attracted the inactive taps to zero adaptively.Theoretical analysis and simulation results show that the proposed algorithm outperforms the existing blind equalization algorithms for sparse channel in reducing ISI and improving convergence rate.
GELLER B , CAPELLANO V , JOURDAIN G . Equalizer for real time high rate transmission in underwater communications [C ] // IEEE International Conference on Acoustics,Speech and Signal Processing . 1995 : 3179 - 3182 .
MILEOUNIS G , BABADI B , KALOUPTSIDIS N , et al . An adaptive greedy algorithm with application to nonlinear communications [J ] . IEEE Transactions on Signal Processing , 2010 , 58 ( 6 ): 2998 - 3007 .
LALOS A S , VLACHOS E , BERBERIDIS K , et al . Greedy algorithms for sparse adaptive decision feedback equalization [C ] // IEEE International Symposium on Signal Processing and Information Technology . 2011 : 240 - 245 .
VLACHOS E , LALOS A S , BERBERIDIS K . Stochastic gradient pursuit for adaptive equalization of sparse multipath channel [J ] . IEEE Journal of Circuits and System , 2012 , 2 ( 3 ): 413 - 423 .
张艳萍 , 赵俊渭 , 李金明 . 稀疏水声信道判决反馈盲均衡算法研究 [J ] . 电子与信息学报 , 2006 , 28 ( 6 ): 1009 - 1011 .
ZHANG Y P , ZHAO J W , LI J M . For sparse underwater acoustic channel equalization [J ] . Journal of Electronics and Information Technology , 2006 , 28 ( 6 ): 1009 - 1011 .
孙丽君 , 孙超 . 一种用于水声信道的稀疏权超指数迭代盲均衡算法研究 [J ] . 电子与信息学报 , 2005 , 27 ( 8 ): 1205 - 1207 .
SUN L J , SUN C . Improved sparse blind equalizer using super-exponential iterative form algorithm for underwater acoustic channels [J ] . Journal of Electronics & Information Technology , 2005 , 27 ( 8 ): 1205 - 1207 .
郭业才 , 郭福东 , 丁雪洁 . 基于正交小波变换的稀疏权盲均衡算法 [J ] . 数据采集与处理 , 2010 , 25 ( 5 ): 569 - 574 .
GUO Y C , GUO F D , DING X J . Sparse equalizer blind equalization algorithm based on orthogonal wavelet transform [J ] . Journal of Data Acquisition & Processing , 2010 , 25 ( 5 ): 569 - 574 .
朱婷婷 , 王英民 . 一种适用于稀疏水声信道的改进型盲均衡算法 [J ] . 信号处理 , 2007 , 23 ( 4A ): 437 - 440 .
ZHU T T , WANG Y M . An improved blind equalization algorithm suitable for sparse underwater acoustic channel [J ] . Signal Processing , 2007 , 23 ( 4A ): 437 - 440 .
KHALID S S , ABRAR S . Blind adaptive algorithm for sparse channel equalization using projections onto-ball [J ] . Electronics Letters , 2015 , 51 ( 18 ): 1422 - 1424 .
傅剑斌 . 稀疏信道估计关键技术研究 [D ] . 郑州:解放军信息工程大学 , 2013 .
FU J B . Research on key technology of sparse channel estimation [D ] . Zhengzhou:PLA Information Engineering University , 2013 .
BRADLEY P S , MANGASARIAN O L . Feature selection via concave minimization and support vector machines [C ] // 15th International Conference on Machine Learning . 1998 : 82 - 90 .
SU G , JIN J , GU Y , et al . Performance analysis of norm constraint least mean square algorithm [J ] . IEEE Transactions on Signal Processing , 2012 , 60 ( 5 ): 2223 - 2235 .
GU Y , JIN J , MEI S . Norm constraint LMS algorithm for sparse system identification [J ] . IEEE Signal Processing Letters , 2009 , 16 ( 9 ): 774 - 777 .
曾召华 , 刘贵忠 , 赵建平 . LMS 和归一化 LMS 算法收敛门限与步长的确定 [J ] . 电子与信息学报 , 2003 , 25 ( 11 ): 1469 - 1473 .
ZENG Z H , LIU G Z , ZHAO J P . Determination of convergence threshold and step size for LMS and normalized LMS algorithms [J ] . Journal of Electronics and Information Technology , 2003 , 25 ( 11 ): 1469 - 1473 .
PELEKANAKIS K , CHITRE M . New sparse adaptive algorithms based on the natural gradient and the-norm [J ] . IEEE Journal of Oceanic Engineering , 2013 , 38 ( 2 ): 323 - 332 .
PALEOLOGU C , BENESTY J , CIOCHINA S . An improved proportionate NLMS algorithm based on the norm [C ] // IEEE International Conference on Acoustic,Speech and Signal Processing . 2010 : 309 - 312 .
0
浏览量
898
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构