浏览全部资源
扫码关注微信
1. 中央财经大学信息学院,北京 100081
2. 电子科技大学网络与数据安全四川省重点实验室,四川 成都 610054
3. 新疆财经大学计算机科学与工程学院,新疆 乌鲁木齐 830012
[ "张艳梅(1976-),女,吉林省吉林市人,博士,中央财经大学副教授,主要研究方向为智能数据分析和服务计算。" ]
[ "黄莹莹(1995-),女,海南海口人,主要研究方向为智能数据分析。" ]
[ "甘世杰(1997-),男,四川邻水人,主要研究方向为信息安全、智能数据分析。" ]
[ "丁熠(1985-),男,四川宜宾人,博士,电子科技大学副教授,主要研究方向为医学图像处理、模式识别。" ]
[ "马志龙(1983-),男,新疆裕民人,新疆财经大学讲师,主要研究方向为信息安全。" ]
网络出版日期:2017-01,
纸质出版日期:2017-01-25
移动端阅览
张艳梅, 黄莹莹, 甘世杰, 等. 基于贝叶斯模型的微博网络水军识别算法研究[J]. 通信学报, 2017,38(1):44-53.
Yan-mei ZHANG, Ying-ying HUANG, Shi-jie GAN, et al. Weibo spammers’ identification algorithm based on Bayesian model[J]. Journal on communications, 2017, 38(1): 44-53.
张艳梅, 黄莹莹, 甘世杰, 等. 基于贝叶斯模型的微博网络水军识别算法研究[J]. 通信学报, 2017,38(1):44-53. DOI: 10.11959/j.issn.1000-436x.2017006.
Yan-mei ZHANG, Ying-ying HUANG, Shi-jie GAN, et al. Weibo spammers’ identification algorithm based on Bayesian model[J]. Journal on communications, 2017, 38(1): 44-53. DOI: 10.11959/j.issn.1000-436x.2017006.
为了能够有效地识别水军,在以往相关研究基础上,设置粉丝关注比、平均发布微博数、互相关注数、综合质量评价、收藏数和阳光信用这6个特征属性来设计微博水军识别分类器,并基于贝叶斯模型和遗传智能优化算法实现了水军识别算法。利用新浪微博真实数据对算法性能进行了验证,实验结果表明,提出的贝叶斯水军识别算法能够在不牺牲非水军识别率的情况下,保证水军识别的准确率,而且提出的阈值优化算法能显著提升水军识别的准确率。
In order to distinguish the spammers efficiently
a classifier based on the behavior characteristics was established.By analyzing the previous research
the ratio of followers
total number of blog posts
the number of friends
comprehensive quality evaluation and favorites according to latest data set
the Weibo spammers’ identification algorithm was realized based on Bayesian model and genetic algorithm.The experiment result based on the real-time data of Sina Weibo verify that the Bayesian model recognition algorithm can ensure spammers recognition accuracy without sacrificing recognition rate of non-spammers
and the proposed threshold value matrix proposed optimization can significantly improve recognition accuracy navy.
SRIRAM B , FUHRY D , DEMIR E , et al . Short text classification in Twitter to improve information filtering [C ] // 33rd Int’l ACM SIGIR Conf.on Research and Development in Information Retrieval (SIGIR 2010) . New York:ACM Press , 2010 : 841 - 842 .
LIU B . Sentiment analysis and subjectivity [M ] . Handbook of Natural Language Processing . Boca Raton : CRC PressPress , 2010 : 627 - 666 .
ZHAO Y Y , QIN B , LIU T . Sentiment analysis [J ] . Journal of Software , 2010 , 21 ( 8 ): 1834 - 1848 .
PARAMESWARAN M , RUI H , SAYIN S . A game theoretic model and empirical analysis of spammer strategies [C ] // 7th Annual Collaboration,Electronic Messaging,Anti-Abuse and Spam Conf . 2010 : 1 - 7 .
GARGARI S M , OGUDUCU S G . A novel framework for spammer detection in social bookmarking systems [C ] // IEEE/ACM Int’l Conf.on Advances in Social Networks Analysis and Mining (ASONAM 2012) . 2012 : 827 - 834 .
莫倩 , 杨珂 . 网络水军识别研究 [J ] . 软件学报 , 2014 , 25 ( 7 ): 1505 - 1526 .
MO Q , YANG K . Overview of Web spammer detection [J ] . Journal of Software , 2014 , 25 ( 7 ): 1505 - 1526 .
KRESTEL R , CHEN L . Using co-occurrence of tags and resources to identify spammers [C ] // Discovery Challenge Workshop at the European Conf on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2008) . 2008 : 38 - 46 .
GAYO-AVELLO D , BRENES D J . Overcoming spammers in Twitter—a tale of five algorithms [C ] // Spanish Conf.on Information Retrieval (CERI 2010) . 2010 : 41 - 52 .
韩忠明 , 杨珂 , 谭旭升 . 利用加权用户关系图的谱分析探测大规模电子商务水军团体 [J/OL ] . http://www.cnki.net/kcms/detail/11.1826.TP.20160809.1459.006.html http://www.cnki.net/kcms/detail/11.1826.TP.20160809.1459.006.html .
HAN Z M , YANG K , TAN X S . Analyzing spectrum features of weight user relation graph to identify large spammer groups in online shopping websites [J/OL ] . http://www.cnki.net/kcms/detail/11.1826.TP.20160809.1459.006.html http://www.cnki.net/kcms/detail/11.1826.TP.20160809.1459.006.html .
张良 , 朱湘 , 李爱平 , 等 . 一种基于逻辑回归算法的水军识别方法 [J ] . 信息安全与技术 , 2015 ( 4 ): 57 - 62 .
ZHANG L , ZHU X , LI A P , et al . The Spammer detection based on logistic regression [J ] . Information Security and Technology , 2015 ( 4 ): 57 - 62 .
叶施仁 , 孙宁 . 基于 SVM 的新浪微博营销类水帖识别研究 [J ] . 湘潭大学自然科学学报 , 2015 , 37 ( 4 ): 70 - 74 .
YE S R , SUN N . Research on Sina microblogging marketing spam review detection based on support vector machine [J ] . Natural Science Journal of Xiangtan University , 2015 , 37 ( 4 ): 70 - 74 .
程晓涛 , 刘彩霞 , 刘树新 . 基于关系图特征的微博水军发现方法 [J ] . 自动化学报 , 2015 , 41 ( 9 ): 1533 - 1541 .
CHENG X T , LIU C X , LIU S X . Graph-based features for identifying spammers in microblog networks [J ] . Acta Automatica Sinica , 2015 , 41 ( 9 ): 1533 - 1541 .
陈侃 , 陈亮 , 朱培栋 , 等 . 基于交互行为的在线社会网络水军检测方法 [J ] . 通信学报 , 2015 , 36 ( 7 ): 120 - 127 .
CHEN K , CHEN L , ZHU P D , et al . Interaction based on method for spam detection in online social networks [J ] . Journal on Communications , 2015 , 36 ( 7 ): 120 - 127 .
杨长春 , 徐小松 , 叶施仁 , 等 . 基于文本相似度的微博网络水军发现算法 [J ] . 微电子学与计算机 , 2014 , 31 ( 3 ): 82 - 85 .
YANG C C , XU X S , YE S R , et al . A method to find water armies in weibo based on text similarity [J ] . Microelectronics & Computer , 2014 , 31 ( 3 ): 82 - 85 .
袁旭萍 , 王仁武 , 翟伯荫 . 基于综合指数和熵值法的微博水军自动识别 [J ] . 情报杂志 , 2014 , 33 ( 7 ): 176 - 179 .
YUAN X P , WANG R W , ZHAI B Y . Automatic recognition of micro-blog water army based on multi-index comprehensive index method and entropy method [J ] . Journal of Intelligence , 2014 , 33 ( 7 ): 176 - 179 .
倪平 , 张玉清 , 闻观行 , 等 . 基于群体特征的社交僵尸网络检测方法 [J ] . 中国科学院大学学报 , 2015 , 31 ( 5 ): 691 - 700 .
NI P , ZHANG Y Q , WEN G X , et al . Detection of socialbot networks based on population characteristics [J ] . Journal of University of Chinese Academy of Sciences , 2015 , 31 ( 5 ): 691 - 700 .
董雨辰 , 刘琰 , 罗军勇 , 等 . 基于支持向量机的炒作微博识别方法 [J ] . 计算机工程 , 2015 , 41 ( 3 ): 7 - 14 .
DONG Y C , LIU Y , LUO J Y , et al . Hype microblog recognition method based on support vector machine [J ] . Computer Engineering , 2015 , 41 ( 3 ): 7 - 14 .
韩忠明 , 许峰敏 , 段大高 . 面向微博的概率图水军识别模型 [J ] . 计算机研究与发展 , 2013 , 50 ( S2 ): 180 - 186 .
HAN Z M , XU F M , DUAN D G . Probabilistic graphical model for identifying water army in microblogging system [J ] . Journal of Computer Research and Development , 2013 , 50 ( S2 ): 180 - 186 .
刘勘 , 袁蕴英 , 刘萍 . 基于随机森林分类的微博机器用户识别研究 [J ] . 北京大学学报 , 2015 , 52 ( 2 ): 290 - 300 .
LIU K , YUAN Y Y , LIU P . A Weibo bot-users indentification model based on random forest [J ] . Acta Scientiarum Naturalium Universitatis Pekinensis , 2015 , 52 ( 2 ): 290 - 300 .
STRINGHINI G , KRUEGEL C , VIGNA G . Detecting spammers on social networks [C ] // 26th Annual Computer Security Applications Conf.(ACSAC 2010) . 2010 : 1 - 9 .
MURMANN A J . Enhancing spammer detection in online social networks with trust-based metrics [D ] . San Jose:San Jose State University , 2009 .
SRIRAM B , FUHRY D , DEMIR E , et al . Short text classification in Twitter to improve information filtering [C ] // 33rd Int’l ACM SIGIR Conf.on Research and Development in Information Retrieval (SIGIR 2010) . 2010 : 841 - 842 .
MOH T S , MURMANN A J . Can you judge a man by his friends? Enhancing spammer detection on the Twitter microblogging platform using friends and followers [C ] // Int’l Conf.on Information Systems and Technology Management (ICISTM 2010) . 2010 : 210 - 220 .
BHAT S Y , ABULAISH M . Community-based features for identifying spammers in online social networks [C ] // 2013 IEEE/ACM Int’l Conf.on Advances in Social Networks Analysis and Mining (ASONAM 2013) . 2013 : 100 - 107 .
潘正茂 . 不平衡数据分类问题研究 [D ] . 西安:西安建筑科技大学 , 2012 : 2 - 49 .
PAN Z M . Research on classification for imbalanced dataset [D ] . Xi’an:Xi’an University of Architecture and Technology , 2012 : 2 - 49 .
0
浏览量
3038
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构