浏览全部资源
扫码关注微信
1. 福建师范大学数学与计算机科学学院,福建 福州 350007
2. 福建师范大学软件学院,福建 福州 350007
3. 福建师范大学大数据分析与应用福建省高校工程研究中心,福建 福州 350007
[ "林晶(1992-),女,福建莆田人,福建师范大学硕士生,主要研究方向为信息安全、数字图像取证。" ]
[ "黄添强(1971-),男,福建仙游人,福建师范大学教授、硕士生导师,主要研究方向为信息安全、数据挖掘、多媒体取证、机器学习。" ]
[ "林玲鹏(1990-),男,福建仙游人,福建师范大学硕士生,主要研究方向为目标跟踪。" ]
[ "李小琛(1988-),女,湖北武汉人,福建师范大学硕士生,主要研究方向为数字多媒体取证。" ]
网络出版日期:2016-10,
纸质出版日期:2016-10-25
移动端阅览
林晶, 黄添强, 林玲鹏, 等. 采用局部强度顺序模式的图像复制—粘贴篡改检测算法[J]. 通信学报, 2016,37(Z1):132-139.
Jing LIN, Tian-qiang HUANG, Ling-peng LIN, et al. Detection of image copy-move forgery using local intensity order pattern[J]. Journal on communications, 2016, 37(Z1): 132-139.
林晶, 黄添强, 林玲鹏, 等. 采用局部强度顺序模式的图像复制—粘贴篡改检测算法[J]. 通信学报, 2016,37(Z1):132-139. DOI: 10.11959/j.issn.1000-436x.2016259.
Jing LIN, Tian-qiang HUANG, Ling-peng LIN, et al. Detection of image copy-move forgery using local intensity order pattern[J]. Journal on communications, 2016, 37(Z1): 132-139. DOI: 10.11959/j.issn.1000-436x.2016259.
复制—粘贴篡改是一种最简单而且常见的图像篡改方式。为了提高目前复制—粘贴篡改检测算法的顽健性,提出一种基于局部强度顺序模式(LIOP
local intensity order pattern)的图像复制—粘贴篡改检测算法。首先,提取待测图像的LIOP特征描述子,然后以特征描述子间的夹角余弦值作为相似性度量,根据最近邻与次近邻的比值阈值寻找稳定的匹配点,最后计算匹配点对间的空间距离以移除误匹配点。实验结果表明,所提算法能够有效检测并定位复制粘贴篡改位置,而且算法检测的准确率高,能够抵抗缩放、旋转、亮度变化以及高斯模糊、加性高斯白噪声、JPEG压缩等后期处理操作。
Copy-move forgery was one of the most simple and common way of image manipulations.To improve the ro-bustness of most existing copy-move forgery detections
a new method based on local intensity order pattern was pro-posed.First
the LIOP feature descriptors were exacted from the inspected image.Then the angular cosine of feature de-scriptors were used to measure the similarity
and the stable matching points were found according to the distance ratio threshold of the nearest neighbor point to the second nearest neighbor.Finally
the space distance of the matching points were calculated to remove the false matching points.Extensive experimental results were presented to confirm that the proposed method is not only able to effectively identify and locate the altered area
but also have high accuracy and ro-bust to scaling
rotation
brightness change and some post-processing
such as Gaussian blur
additive white Gaussian noise and JPEG compression.
周琳娜 , 王东明 . 数字图像取证技术 [M ] . 北京 : 北京邮电大学出版社 , 2008 : 1 - 2 .
ZHOU L N , WANG D M . Digital image forensics [M ] . Beijing : Bei-jing University of Posts and Telecommunications Press , 2008 : 1 - 2 .
BAYRAM S , SENCAR H T , MEMON N . A survey of copy-move forgery detection techniques[C]//IEEE Western New York Image Processing Workshop . Rochester,NY,USA:IEEE , 2008 .
CHRISTLEIN V , RIESS C , JORDAN J , et al . An evaluation of popu-lar copy-move forgery detection approaches [J ] . IEEE Transactions &Information Forensics and Security , 2012 , 7 ( 6 ): 1841 - 1854 .
FRIDRICH J W , SOUKAL B D , LUKAS J . Detection of copy-move forgery in digital images[C]//Digital Forensic Research Workshop , 2003 .
KANG X B , WEI S M . Identifying tampered regions using singular value decomposition in digital image forensics[C]//International Con-ference on Computer Science and Software Engineering . New York,USA:IEEE , 2008 : 926 - 930 .
RYU S J , LEE M J , LEE H K . Detection of copy-rotate-move forgery using Zernike moments[C]//Information Hiding . New York,USA:Springer , 2010 : 51 - 65 .
MUHAMMAD G , HUSSAIN M , KHAWAJI K , et al . Blind copy move image forgery detection using dyadic undecimated wavelet transform[C]//International Conference on Digital Signal Processing (DSP) . New York,USA:IEEE , 2011 : 1 - 6 .
AMERINI I , BALLAN L , CALDELLI R , et al . A SIFT-based forensic method for copy-move attack detection and transformation recovery [J ] . IEEE Transactions on Information forensics & Security , 2011 , 6 ( 3 ): 1099 - 1109 .
WANG Z H , FAN B , WANG G , et al , Exploring local and overall ordinal information for robust feature description [J ] . IEEE Transac-tions on Pattern Analysis & Machine Intelligence , 2015 .
LOWE D G . Distinctive image features from scale-invariant key-points [J ] . International Journal of Computer Vision , 2004 , 60 : 91 - 110 .
TOLA E , LEPETIT V , FUA P . Daisy:an efficient dense descriptor applied to wide-baseline stereo [J ] . IEEE Transactions on Software Engineering , 2010 , 32 ( 5 ): 815 - 830 .
GUPTA R , PATIL H , MITTAL A . Robust order-based methods for feature description[C]//IEEE Conference on Computer Vision & Pat-tern Recognition . 2010 : 334 - 341 .
MIKOLAJCZYK K , SCHMID C . Scale & affine invariant interest point detectors [J ] . International Journal of Computer Vision , 2004 , 60 ( 1 ): 63 - 86 .
CASIA V2.0.CASIA V2.0 tampered image detection evaluation (TIDE) database,v2.0 (2011) [EB/OL ] . http://forensics.idealtest.org http://forensics.idealtest.org .
0
浏览量
769
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构