浏览全部资源
扫码关注微信
1. 武汉大学计算机学院,湖北 武汉 430072
2. 江西理工大学应用科学学院,江西 赣州 341000
3. 华南农业大学信息学院,广东 广州 510642
[ "董文永(1973-),男,河南南阳人,博士,武汉大学教授、博士生导师,主要研究方向为演化计算、智能仿真优化、系统控制、机器学习等。" ]
[ "康岚兰(1979-),女,江西赣州人,武汉大学博士生,江西理工大学讲师,主要研究方向为演化计算、机器学习等。" ]
[ "刘宇航(1979-),男,湖北孝感人,武汉大学博士生,主要研究方向为统计机器学习及相关应用。" ]
[ "李康顺(1962-),男,江西兴国人,博士,华南农业大学教授、博士生导师,主要研究方向为智能计算、多目标优化、视频流图像识别等。" ]
网络出版日期:2013-12,
纸质出版日期:2016-12-25
移动端阅览
董文永, 康岚兰, 刘宇航, 等. 带自适应精英扰动及惯性权重的反向粒子群优化算法[J]. 通信学报, 2016,37(12):1-10.
Wen-yong DONG, Lan-lan KANG, Yu-hang LIU, et al. Opposition-based particle swarm optimization with adaptive elite mutation and nonlinear inertia weight[J]. Journal on communications, 2016, 37(12): 1-10.
董文永, 康岚兰, 刘宇航, 等. 带自适应精英扰动及惯性权重的反向粒子群优化算法[J]. 通信学报, 2016,37(12):1-10. DOI: 10.11959/j.issn.1000-436x.2016224.
Wen-yong DONG, Lan-lan KANG, Yu-hang LIU, et al. Opposition-based particle swarm optimization with adaptive elite mutation and nonlinear inertia weight[J]. Journal on communications, 2016, 37(12): 1-10. DOI: 10.11959/j.issn.1000-436x.2016224.
针对反向粒子群优化算法存在的易陷入局部最优、计算开销大等问题,提出了一种带自适应精英粒子变异及非线性惯性权重的反向粒子群优化算法(OPSO-AEM&NIW),来克服该算法的不足。OPSO-AEM&NIW算法在一般性反向学习方法的基础上,利用粒子适应度比重等信息,引入了非线性的自适应惯性权重(NIW)调整各个粒子的活跃程度,继而加速算法的收敛过程。为避免粒子陷入局部最优解而导致搜索停滞现象的发生,提出了自适应精英变异策略(AEM)来增大搜索范围,结合精英粒子的反向搜索能力,达到跳出局部最优解的目的。上述2种机制的结合,可以有效克服反向粒子群算法的探索与开发的矛盾。实验结果表明,与主流反向粒子群优化算法相比,OPSO-AEM&NIW算法无论是在计算精度还是计算开销上均具有较强的竞争能力。
An opposition-based particle swarm optimization with adaptive elite mutation and nonlinear inertia weight (OPSO-AEM&NIW) was proposed to overcome the drawbacks
such as falling into local optimization
slow convergence speed of opposition-based particle swarm optimization. Two strategies were introduced to balance the contradiction be-tween exploration and exploitation during its iterations process. The first one was nonlinear adaptive inertia weight (NIW)
which aim to accelerate the process of convergence of the algorithm by adjusting the active degree of each parti-cle using relative information such as particle fitness proportion. The second one was adaptive elite mutation strategy (AEM)
which aim to avoid algorithm trap into local optimum by trigging particle's activity. Experimental results show OPSO-AEM&NIW algorithm has stronger competitive ability compared with opposition-based particle swarm optimiza-tions and its varieties in both calculation accuracy and computation cost.
KENNEDY J , EBERHART R C . Particle swarm optimization [C ] // IEEE International Conference on Neural Networks . Perth, Australia , 1995 : 1942 - 1948 .
史霄波 , 张引 , 赵杉 , 等 . 基于离散多目标优化粒子群算法的多移动代理协作规划 [J ] . 通信学报 , 2016 , 37 ( 6 ): 29 - 37 .
SHI X B , ZHANG Y , ZHAO S , et al . Discrete multi-objective optimi-zation of particle swarm optimizer algorithm for multi-agents collabo-rative planning [J ] . Journal on Communications , 2016 , 37 ( 6 ): 29 - 37 .
INBARANI H H , AZAR A T , JOTHI G . Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis [J ] . Computer Methods and Programs in Biomedicine , 2014 , 113 ( 1 ): 175 - 185 .
ZAD B B , HASANVAND H , LOBRY J , et al . Optimal reactive power control of DGs for voltage regulation of MV distribution systems using sensitivity analysis method and PSO algorithm [J ] . International Journal of Electrical Power and Energy System , 2015 , 68 : 52 - 60 .
SHI Y , EBERHART R C . A modified particle swarm optimizer [C ] // The IEEE Congress on Evolutionary Computation (CEC 1998) . 1998 : 69 - 73 .
TIZHOOSH H R . Opposition-based learning: a new scheme for ma-chine intelligence [C ] // The IEEE International Conference of Intelli-gent for Modeling, Control and Automation. PiscatNIWay: Inst of Elec. and Elec Eng Computer Society . 2005 : 695 - 701 .
WANG H , LI H , LIU Y , et al . Opposition-based particle swarm algo-rithm with Cauchy mutation [C ] // The IEEE Congress on Evolutionary Computation . 2007 : 356 - 360 .
WANG H , WU Z J , RAHNAMAYAN S , et al . Enhancing particle swarm optimization using generalized opposition-based learning [J ] . Information Sciences , 2011 , 181 : 4699 - 4714 .
周新宇 , 吴志健 , 王晖 , 等 . 一种精英反向学习的粒子群优化算法 [J ] . 电子学报 , 2013 , 41 ( 8 ): 1647 - 1652 .
ZHOU X Y , WU Z J , WANG H , et al . Elite opposition-based par-ticle swarm optimization [J ] . Acta Electronica Sinica , 2013 , 41 ( 8 ): 1647 - 1652 .
SHAHZAD F , BAIG A R , MASOOD S , et al . Opposition-based parti-cle swarm optimization with velocity clamping (OVCPSO) [J ] . Ad-vances in Computational Intell , 2009 , 339 : 348 - 60 .
KAUCIC M . A multi-start opposition-based particle swarm optimiza-tion algorithm with adaptive velocity for bound constrained global op-timization [J ] . J Glob Optim , 2013 , 55 : 165 - 188 .
PEHLIVANOGLU Y V . A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks [J ] . IEEE Trans Evol Comput , 2013 , 17 : 436 - 452 .
KARAFOTIAS G , HOOGENDOORN M , EIBEN A E . Parameter control in evolutionary algorithms: trends and challenges [J ] . IEEE Transactions on Evolutionary Computation , 2015 , 19 : 167 - 187 .
汪慎文 , 丁立新 , 谢承旺 , 等 . 应用精英反向学习策略的混合差分演化算法 [M ] . 武汉大学学报(理学版) , 2013 , 59 ( 2 ): 111 - 116 .
WANG S W , DING L X , XIE C W , et al . A hybrid differential evolu-tion with elite opposition-based learning [J ] . Journal of Wuhan Uni-versity , 2013 , 59 ( 2 ): 111 - 116 .
OZCAN E , MOHAN C K . particle swarm optimization: surfing and waves [C ] // Congress on Evolutionary Computation (CEC1999) . 1999 : 1939 - 1944 .
龚纯 , 王正林 . 精通MATLAB最优化计算 [M ] . 电子工业出版社 , 2012 : 283 - 285 .
GONG C , WANG Z L . Proficient optimization calculation in MAT-LAB [M ] . Electronic Industry Press , 2012 : 283 - 285 .
FRANS V D B . An analysis of particle swarm optimizers [D ] . Depart-ment of Computer Science, University of Pretoria, South Africa , 2002 .
TANG K , LI X D , SUGANTHAN P N , et al . Benchmark functions for the CEC'2010 special session and competition on large-scale global optimization [R ] . Nature Inspired Computation and Applications Laboratory, USTC, China , 2009 , 21 .
BERGH F , ENGELBRECHT A P . Effect of swarm size on cooperative particle swarm optimizers [C ] // Genetic and Evolutionary Computation Conference . 2001 : 892 - 899 .
0
浏览量
1068
下载量
14
CSCD
关联资源
相关文章
相关作者
相关机构