浏览全部资源
扫码关注微信
1. 解放军信息工程大学网络空间安全学院,河南 郑州 450001
2. 数学工程与先进计算国家重点实验室,河南 郑州 450001
[ "袁福祥(1991-),男,山东济宁人,解放军信息工程大学硕士生,主要研究方向为网络信息处理。" ]
[ "刘粉林(1964-),男,江苏溧阳人,解放军信息工程大学教授、博士生导师,主要研究方向为网络信息安全、信息隐藏与检测。" ]
[ "芦斌(1982-),男,山西灵石人,解放军信息工程大学讲师,主要研究方向为数字水印、软件工程。" ]
[ "巩道福(1984-),男,山东淄博人,解放军信息工程大学讲师,主要研究方向为数字水印、网络信息安全。" ]
网络出版日期:2016-10,
纸质出版日期:2016-10-25
移动端阅览
袁福祥, 刘粉林, 芦斌, 等. 基于历史数据的异常域名检测算法[J]. 通信学报, 2016,37(10):172-180.
Fu-xiang YUAN, Fen-lin LIU, Bin LU, et al. Anomaly domains detection algorithm based on historical data[J]. Journal on communications, 2016, 37(10): 172-180.
袁福祥, 刘粉林, 芦斌, 等. 基于历史数据的异常域名检测算法[J]. 通信学报, 2016,37(10):172-180. DOI: 10.11959/j.issn.1000-436x.2016208.
Fu-xiang YUAN, Fen-lin LIU, Bin LU, et al. Anomaly domains detection algorithm based on historical data[J]. Journal on communications, 2016, 37(10): 172-180. DOI: 10.11959/j.issn.1000-436x.2016208.
提出一种基于域名历史数据的异常域名检测算法。该算法基于合法域名与恶意域名历史数据的统计差异,将域名已生存时间、whois信息变更、whois信息完整度、域名IP变更、同IP地址域名和域名TTL值等作为主要参量,给出了具体的分类特征表示;在此基础上,构建了用于异常域名检测的 SVM 分类器。特征分析和实验结果表明,算法对未知域名具有较高的检测正确率,尤其适合对生存时间较长的恶意域名进行检测。
An anomaly domains detection algorithm was proposed based on domains’ historical data.Based on statistical differences in historical data of legitimate domains and malicious domains
the proposed algorithm used domains’ lifetime
changes of whois information
whois information integrity
IP changes
domains that share same IP
TTL value
etc
as main parameters and concrete representations of features for classification were given.And on this basis the proposed algorithm constructed SVM classifier for detecting anomaly domains.Features analysis and experimental results show that the algorithm obtains high detection accuracy to unknown domains
especially suitable for detecting long lived malicious domains.
ROSSOW C , DIETRICH C , BOS H . Detection of intrusions and malware,and vulnerability assessment [M ] . Berlin : SpringerPress , 2013 .
MAHMOUD M , NIR M , MATRAWY A . A survey on botnet architectures,detection and defences [J ] . International Journal of Network Security , 2015 , 17 ( 3 ): 272 - 289 .
PU Y , CHEN X , CUI X , et al . Data stolen trojan detection based on network behaviors [J ] . Procedia Computer Science , 2013 , 17 : 828 - 835 .
NIRMAL K , JANET B , KUMAR R . Phishing-the threat that still exists [C ] // International Conference on Computing and Communications Technologies(ICCCT) . IEEE , 2015 : 139 - 143 .
CHEN C M , CHENG S T , CHOU J H . Detection of fast-flux domains [J ] . Journal of Advances in Computer Networks , 2013 , 1 ( 2 ): 148 - 152 .
VANIA J , MENIYA A , JETHVA H B . A review on botnet and detection technique [J ] . International Journal of Computer Trends and Technology , 2013 , 4 ( 1 ): 23 - 29 .
KHATTAK S , RAMAY N R , KHAN K R , et al . A taxonomy of botnet behavior,detection and defense [J ] . Communications Surveys & Tutorials,IEEE , 2014 , 16 ( 2 ): 898 - 924 .
GARCÍA S , UHLÍŘ V , REHAK M . Identifying and modeling botnet C&C behaviors [C ] // The 1st International Workshop on Agents and CyberSecurity . ACM , 2014 .
YADAV S , REDDY A K K , REDDY A L , et al . Detecting algorithmically generated malicious domain names [C ] // The 10th ACM SIGCOMM Conference on Internet Measurement . Melbourne,Australia , 2010 : 48 - 61 .
FELEGYHAZI M , KREIBICH C , PAXSON V . On the potential of proactive domain blacklisting [C ] // The 3rd USENIX Conference on Large-Scale Exploits and Emergent Threats:Botnets,Spyware,Worms,and More . San Jose,CA,USA , 2010 .
刘爱江 , 黄长慧 , 胡光俊 . 基于改进神经网络算法的木马控制域名检测方法 [J ] . 电信科学 , 2014 , 30 ( 7 ): 39 - 42 .
LIU A J , HUANG C H , HU G J . Detection method of trojan's control domain based on improved neural network algorithm [J ] . Telecommunications Science , 2014 , 30 ( 7 ): 39 - 42 .
ANTONAKAKIS M , PERDISCI R , DAGON D , et al . Building a dynamic reputation system for DNS [C ] // USENIX Security Symposium . Washington,DC,USA , 2010 : 273 - 290 .
ANTONAKAKIS M , PERDISCI R , LEE W , et al . Detecting malware domains at the upper DNS hierarchy [C ] // USENIX Security Symposium . San Francisco,CA,USA , 2011 : 23 - 46 .
BILGE L , SEN S , BALZAROTTI D , et al . Exposure:a passive DNS analysis service to detect and report malicious domains [J ] . ACM Transactions on Information and System Security (TISSEC) , 2014 , 16 ( 4 ): 14 - 41 .
周勇林 , 由林麟 , 张永铮 . 基于命名及解析行为特征的异常域名检测方法 [J ] . 计算机工程与应用 , 2011 , 47 ( 20 ): 50 - 52 .
ZHOU Y L , YOU L L , ZHANG Y Z . Anomaly domain name detection method based on characteristics of name and resolution behavior [J ] . Computer Engineering and Applications , 2011 , 47 ( 20 ): 50 - 52 .
LENG Y , XU X , QI G . Combining active learning and semi-supervised learning to construct SVM classifier [J ] . Knowledge-Based Systems , 2013 , 44 : 121 - 131 .
YU B , SMITH L , THREEFOOT M . Machine learning and data mining in pattern recognition [M ] . Berlin : SpringerPress , 2014 .
0
浏览量
1273
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构