浏览全部资源
扫码关注微信
1. 南京邮电大学计算机学院,江苏 南京 210003
2. 中国电信济宁分公司,山东 济宁272000
3. 北京信息科技大学公共管理与传媒学院,北京 100192
[ "陈云芳(1976-),男,江苏镇江人,博士,南京邮电大学副教授,主要研究方向为网络安全、社会网络、大数据分析等。" ]
[ "夏涛(1989-),男,山东济宁人,硕士,中国电信济宁分公司工程师,主要研究方向为社会计算、社会影响力。" ]
[ "张伟(1973-),男,江苏泰兴人,博士,南京邮电大学教授,主要研究方向为社会网络分析、隐私保护、恶意代码分析等。" ]
[ "李晋(1977-),女,山西长治人,北京信息科技大学讲师,主要研究方向为网络与新媒体传播。" ]
网络出版日期:2016-10,
纸质出版日期:2016-10-25
移动端阅览
陈云芳, 夏涛, 张伟, 等. 基于亲和传播的动态社会网络影响力扩散模型[J]. 通信学报, 2016,37(10):40-47.
Yun-fang CHEN, Tao XIA, Wei ZHANG, et al. Influence diffusion model based on affinity of dynamic social network[J]. Journal on communications, 2016, 37(10): 40-47.
陈云芳, 夏涛, 张伟, 等. 基于亲和传播的动态社会网络影响力扩散模型[J]. 通信学报, 2016,37(10):40-47. DOI: 10.11959/j.issn.1000-436x.2016194.
Yun-fang CHEN, Tao XIA, Wei ZHANG, et al. Influence diffusion model based on affinity of dynamic social network[J]. Journal on communications, 2016, 37(10): 40-47. DOI: 10.11959/j.issn.1000-436x.2016194.
影响力最大化模型研究是近来社会网络的一个热点问题,然而传统的独立级联模型以静态网络中为基础,且激活概率一般设定为固定值。提出一种加入衰减因数的动态社会网络影响力扩散模型—DDIC 模型,其采用亲和传播来计算节点之间的激活概率,依据时间片对社会网络进行动态切分,使激活概率在不同时间片中实现了有效关联。实验结果表明DDIC模型中种子节点有更多机会激活它的邻居节点,且采用亲和传播计算出的影响力值能更准确地体现DDIC模型的传播过程。
Recently
influence maximization model is a hot issue in the field of social network influence
while the traditional independent cascade model is generally based on static network with a fixed value of activation probability.DDIC model
which was a dynamic network influence diffusion model with attenuation factor was proposed.It calculated the activation probability between nodes via affinity propagation
and according with dynamic segmentation of social network time slice
calculation of influence on proliferation of next time slice with the current time slice of activation probability performance decay.The experimental results show that the nodes in the DDIC model have more chances to active the neighbor and the average probability of activing of the DDIC model is higher.Further experiments show that influence value via computing with affinity propagation can reflect the process of the spread model more accurately.
RICHARDSON M , DOMINGOS P . Mining knowledge-sharing sites for viral marketing [C ] // KDD '02 Proceedings of the Eighth ACM SIGKDD International Conference . 2002 : 61 - 70 .
KEMPE D , KLEINBERG J M , TARDOS A . Maximizing the spread of influence through a social network [C ] // The 9th ACM SIGKDD Conference on Knowledge Discovery and Data Mining . 2003 : 137 - 146 .
LESKOVEC J , KRAUSE A , GUESTRIN C . Cost-effective outbreak detection in networks [C ] // The 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2007 : 420 - 429 .
CHEN W , WANG Y , YANG S . Efficient influence maximization in social networks [C ] // Proceedings of the 15th ACM SIGKDD International Conference . 2009 : 199 - 208 .
GALSTYAN A , MUSOYAN V , COHEN P R . Maximizing influence propagation in networks with community structure [J ] . Physical Review E Statistical Nonlinear & Soft Matter Physics , 2009 , 79 ( 2 ): 711 - 715 .
CAO T Y , WU X D , WANG S , et al . OASNET:an optimal allocation approach to influence maximization in modular social networks [J ] . ACM Symposium on Applied Computing , 2010 : 1088 - 1094 .
SAITO K , NAKANO R , KIMURA M . Prediction of information diffusion probabilities for independent cascade model [J ] . KnowledgeBased Intelligent Information and Engineering Systems Lecture Notes in Computer Science , 2008 : 67 - 75 .
BARBIERI N , BONCHI F , MANCO G . Topic-aware social influence propagation models [J ] . Knowledge and Information Systems ,2013: 2012 , 37 ( 3 ): 81 - 90 .
TANG J , SUN J M , WANG C . Social influence analysis in large-scale networks [C ] // The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2009 : 807 - 816 .
FREY B J , DUECK D . Clustering by passing messages between data points [J ] . Science , 2007 , 315 ( 5814 ): 972 - 976 .
HABIBA T W B , BERGER-WOLF T Y . Maximizing the extent of spread in a dynamic network [J ] . Technical Report 20.DIMACS , 2007 .
0
浏览量
840
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构