浏览全部资源
扫码关注微信
国家数字交换系统工程技术研究中心,河南 郑州 450002
[ "王亚文(1990-),男,河南郑州人,硕士,国家数字交换系统工程技术研究中心博士生,主要研究方向为多媒体技术、模式识别、计算机视觉等。" ]
[ "陈鸿昶(1964-),男,河南新密人,国家数字交换系统工程技术研究中心教授、博士生导师,主要研究方向为电信网安全防护技术。" ]
[ "李邵梅(1982-),女,湖北钟祥人,博士,国家数字交换系统工程技术研究中心讲师,主要研究方向为多媒体技术、模式识别、计算机视觉等。" ]
[ "高超(1982-),男,河南新郑人,博士,国家数字交换系统工程技术研究中心讲师,主要研究方向为多媒体技术、模式识别、计算机视觉等。" ]
网络出版日期:2016-09,
纸质出版日期:2016-09-25
移动端阅览
王亚文, 陈鸿昶, 李邵梅, 等. 融合遮挡感知的在线Boosting跟踪算法[J]. 通信学报, 2016,37(9):92-101.
Ya-wen WANG, Hong-chang CHEN, Shao-mei LI, et al. Online Boosting tracking algorithm combined with occlusion sensing[J]. Journal on communications, 2016, 37(9): 92-101.
王亚文, 陈鸿昶, 李邵梅, 等. 融合遮挡感知的在线Boosting跟踪算法[J]. 通信学报, 2016,37(9):92-101. DOI: 10.11959/j.issn.1000-436x.2016181.
Ya-wen WANG, Hong-chang CHEN, Shao-mei LI, et al. Online Boosting tracking algorithm combined with occlusion sensing[J]. Journal on communications, 2016, 37(9): 92-101. DOI: 10.11959/j.issn.1000-436x.2016181.
提出融合遮挡感知的在线Boosting跟踪算法,该算法对跟踪结果实时进行遮挡检测,根据检测结果自适应调整分类器更新策略。该方式能够有效维护分类器特征池的纯净,提高算法在遮挡环境下的顽健性。实验结果表明,与传统的在线Boosting跟踪算法相比,改进的算法能有效解决目标遮挡问题。
Online Boosting tracking algorithm combined with occlusion sensing was presented.In this method
occlusion sensor was introduced to check the tracking results
and classifier updating strategy was adjusted depending on the occlusion checking results.By this way
the feature pool of the classifier can be kept pure
which will improve the tracking robustness under occlusion.Experimental results show that compared with traditional Boosting tracking algorithm
improved algorithm can solve the problem of occlusion very well.
罗会兰 , 杜芳芳 , 孔繁胜 . 像素点特征加权的尺度自适应跟踪算法 [J ] . 通信学报 , 2015 , 36 ( 10 ): 200 - 211 .
LUO H L , DU F F , KONG F S . Pixel feature-weighted scale-adaptive object tracking algorithm [J ] . Journal on Communication , 2015 , 36 ( 10 ): 200 - 211 .
张焕龙 , 胡士强 , 杨国胜 . 基于外观模型学习的视频目标跟踪方法综述 [J ] . 计算机研究与发展 , 2015 , 52 ( 1 ): 177 - 190 .
ZHANG H L , HU S Q , YANG G S . Video object tracking based on appearance models learning [J ] . Journal of Computer Research and Development , 2015 , 52 ( 1 ): 177 - 190 .
BAI Y , TANG M . Robust tracking via weakly supervised ranking SVM [C ] // The IEEE Conference on Computer Vision and Pattern Recognition . 2012 : 1854 - 1861 .
GRABNER H , BISCHOF H . On-line boosting and vision [C ] // The IEEE Conference on Computer Vision and Pattern Recognition . 2006 : 260 - 267 .
程有龙 , 李斌 , 张文聪 , 等 . 融合先验知识的自适应行人跟踪算法 [J ] . 模式识别与人工智能 , 2009 , 22 ( 5 ): 704 - 708 .
CHENG Y L , LI B , ZHANG W C , et al . An adaptive pedestrian tracking algorithm with prior knowledge [J ] . PR & AI , 2009 , 22 ( 5 ): 704 - 708 .
颜佳 , 吴敏渊 . 遮挡环境下采用在线Boosting的目标跟踪 [J ] . 光学精密工程 , 2012 , 20 ( 2 ): 439 - 446 .
YAN J , WU M Y . On-line boosting based target tracking under occlusion [J ] . Optics and Precision Engineering , 2012 , 20 ( 2 ): 439 - 446 .
ADAM A , RIVLIN E , SHIMSHONI I . Robust fragments-based tracking using the integral histogram [C ] // The IEEE Conference on Computer Vision and Pattern Recognition . 2006 : 798 - 805 .
HU H , MA B , WU Y , et al . Kernel regression based online boosting tracking [J ] . Journal of Information Science and Engineering , 2015 , 31 ( 1 ): 267 - 282 .
YANG F , LU H , YANG M H . Robust visual tracking via multiple kernel boosting with affinity constraints [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2014 , 24 ( 2 ): 242 - 254 .
GRABNER H , LEISTNER C , BISCHOF H . Semi-supervised on-line boosting for robust tracking [C ] // The European Conference on Computer Vision . 2008 : 234 - 247 .
陈思 , 苏松志 , 李绍滋 , 等 . 基于在线半监督 Boosting 的协同训练目标跟踪算法 [J ] . 电子与信息学报 , 2014 , 36 ( 4 ): 888 - 895 .
CHEN S , SU S Z , LI S Z , et al . A novel co-training object tracking algorithm based on online semi-supervised Boosting [J ] . Journal of Electronics & Information Technology , 2014 , 36 ( 4 ): 888 - 895 .
BABENKO B , YANG M H , BELONGIE S . Robust object tracking with online multiple instance learning [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 8 ): 1619 - 1632 .
RUBLEE E , RABAUD V , KONOLIGE K , et al . ORB:an efficient alternative to SIFT or SURF [C ] // The International Conference on Computer Vision . 2011 : 2564 - 2571 .
唐剑琪 , 谢林江 , 袁庆生 , 等 . 基于 ORB 的镜头边界检测算法 [J ] . 通信学报 , 2013 , 34 ( 11 ): 184 - 190 .
TANG J Q , XIE L J , YUAN Q S , et al . Shot boundary detection algorithm based on ORB [J ] . Journal on Communication , 2013 , 34 ( 11 ): 184 - 190 .
PERNICI F , DEL B A . Object tracking by oversampling local features [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2014 , 36 ( 12 ): 2538 - 2551 .
WU Y , LIM J , YANG M H . Online object tracking:a benchmark [C ] // The IEEE Conference on Computer Vision and Pattern Recognition . 2013 : 2411 - 2418 .
0
浏览量
770
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构