浏览全部资源
扫码关注微信
1. 西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安710071
2. 中国科学院大学国家计算机网络入侵防范中心,北京 100190
3. 中国科学院信息工程研究所物联网信息安全技术北京市重点实验室,北京 100097
[ "吕少卿(1987-),男,山西五寨人,西安电子科技大学博士生,主要研究方向为在线社交网络安全。" ]
[ "张玉清(1966-),男,陕西宝鸡人,博士,中国科学院大学教授、博士生导师,主要研究方向为网络与信息系统安全。" ]
[ "刘东航(1990-),男,山西太原人,西安电子科技大学硕士生,主要研究方向为网络和信息安全。" ]
[ "张光华(1979-),男,河北石家庄人,博士,西安电子科技大学博士后在站,主要研究方向为信任管理、无线网络安全。" ]
网络出版日期:2016-09,
纸质出版日期:2016-09-25
移动端阅览
吕少卿, 张玉清, 刘东航, 等. 在线社交网络中Spam相册检测方案[J]. 通信学报, 2016,37(9):75-91.
Shao-qing LYU, Yu-qing ZHANG, Dong-hang LIU, et al. Detecting Spam albums in online social network[J]. Journal on communications, 2016, 37(9): 75-91.
吕少卿, 张玉清, 刘东航, 等. 在线社交网络中Spam相册检测方案[J]. 通信学报, 2016,37(9):75-91. DOI: 10.11959/j.issn.1000-436x.2016180.
Shao-qing LYU, Yu-qing ZHANG, Dong-hang LIU, et al. Detecting Spam albums in online social network[J]. Journal on communications, 2016, 37(9): 75-91. DOI: 10.11959/j.issn.1000-436x.2016180.
提出一种针对Spam相册的检测方案。首先分析了Photo Spam的攻击特点以及与传统Spam的差异,在此基础上构造了12个提取及时且计算高效的特征。利用这些特征提出了有监督学习的检测模型,通过2 356个相册的训练形成Spam相册分类器,实验表明能够正确检测到测试集中100%的Spam相册和98.2%的正常相册。最后将训练后的模型应用到包含315 115个相册的真实数据集中,检测到89 163个Spam相册,正确率达到97.2%。
A supervised learning solution to detect Spam albums instead of spammers in Photo Spam was proposed.Specifically
the characteristics of Photo Spam and the differences between Photo Spam and traditional Spam were analyzed.Then 12 features which were extracted easily and calculated efficiently were constructed based on the analysis.Next a classification model was built with a dataset of 2 356 labeled albums to identify Spam albums.The model provided excellent performance with true positive rates of Spam albums and normal albums
reaching 100% and 98.2% respectively.Finally
the detection model were applied to 315 115 unlabeled albums and detected 89 163 spam albums with a true positive rate of 97.2%.
GAO H , HU J , HUANG T . Security issues in online social networks [J ] . IEEE Internet Computing , 2011 , 15 ( 4 ): 56 - 63 .
FIRE M , GOLDSCHMIDT R , ELOVICI Y . Online social networks:threats and solutions survey [J ] . IEEE Communications Surveys and Tutorials , 2013 , 16 ( 4 ): 2019 - 2036 .
CAVIGLIONE L , COCCOLI M , MERLO A . A taxonomy–based model of security and privacy in online social networks [J ] . International Journal of Computational Science and Engineering , 2014 , 9 ( 4 ): 325 - 338 .
GAO H , HU J , WILSON C . Detecting and characterizing social Spam campaigns [C ] // The 10th ACM SIGCOMM conference on Internet Measurement . Melbourne,Australia , 2010 : 35 - 47 .
LEE K , EOFF B D , CAVERLEE J . Seven months with the devils:a long-term study of content polluters on twitter [C ] // The Fifth International AAAI Conference on Weblogs and Social Media . Barcelona,Spain , 2011 : 185 - 192 .
MARTINEZ-ROMO J , ARAUJO L . Detecting malicious tweets in trending topics using a statistical analysis of language [J ] . Expert Systems with Applications , 2013 , 40 ( 8 ): 2992 - 3000 .
MILLER Z , DICKINSON B , DEITRICK W . Twitter Spammer detection using data stream clustering [J ] . Information Sciences , 2014 , 260 : 64 - 73 .
ZHANG J , GU G . NEIGHBORWATCHER:A content-agnostic comment spam inference system [C ] // Network & Distributed System Security Symposium . San Diego,CA,United States , 2013 .
BENEVENUTO F , MAGNO G , RODRIGUES T . Detecting spammers on twitter [C ] // The Collaboration,Electronic Messaging,Anti-abuse and Spam Conference . Redmond,USA , 2010 : 6 - 12 .
ZHENG X , ZENG Z , CHEN Z . Detecting spammers on social networks [J ] . Neurocomputing , 2015 , 159 ( 2 ): 27 - 34 .
STRINGHINI G , KRUEGEL C , VIGNA G . Detecting spammers on social networks [C ] // The 26th Annual Computer Security Applications Conference . TX,USA , 2010 : 1 - 9 .
LEE K , CAVERLEE J , WEBB S . Uncovering social Spammers:social honeypots+ machine learning [C ] // The 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval . Geneva,Switzerland , 2010 : 435 - 442 .
ZHU Y , WANG X , ZHONG E . Discovering Spammers in social networks [C ] // The 26th AAAI Conference on Artificial Intelligence . Toronto,Canada , 2012 : 171 - 177 .
WANG G , KONOLIGE T , WILSON C . You are how you click:clickstream analysis for sybil detection [C ] // The 22rd USENIX Security Symposium . Washington,USA , 2013 : 241 - 256 .
CAO Q , YANG X , YU J . Uncovering large groups of active malicious accounts in online social networks [C ] // The 2014 ACM SIGSAC Conference on Computer and Communications Security . Scottsdale,USA , 2014 : 477 - 488 .
LESKOVEC J , FALOUTSOS C . Sampling from large graphs [C ] // The 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Philadelphia . USA , 2006 : 631 - 636 .
GJOKA M , KURANT M , BUTTS C . Walking in facebook:a case study of unbiased sampling of OSNs [C ] // IEEE Proceedings of INFOCOM . California,USA , 2010 : 1 - 9 .
HU J , BAGGA A . Categorizing images in Web documents [J ] . MultiMedia,IEEE , 2004 , 11 ( 1 ): 22 - 30 .
WAN C , GENG J , CHENG H . Image spam identifying algorithm based on color and corner feature [J ] . Computer Engineering , 2009 , 35 ( 15 ): 209 - 211 .
DREDZE M , GEVARYAHU R , ELIAS B A . Learning fast classifiers for image spam [C ] // In Conference on Email and Anti-Spam(CEAS) . California,USA , 2007 : 1 - 9 .
GONEN M , ALPAYDIN E . Supervised learning of local projection kernels [J ] . Neurocomputing , 2010 , 73 ( 10 ): 1694 - 1703 .
CORTES C , VAPNIK V . Support-vector networks [J ] . Machine learning , 1995 , 20 ( 3 ): 273 - 297 .
KUBAT M , MATWIN S . Addressing the curse of imbalanced training sets:one-sided selection [C ] // International Conference on Machine Learning . Tennessee,USA , 1997 : 179 - 186 .
e1071:misc functions of the department of statistics,probability theory group [EB/OL ] . http://CRAN.R-project.org/package=e1071 http://CRAN.R-project.org/package=e1071 . 2015 . 10 . 11 .
Rpart:recursive partitioning and regression trees [EB/OL ] . http://CRAN.R-project.org/package=rpart http://CRAN.R-project.org/package=rpart . 2015 . 10 . 11 .
RandomForest:breiman and cutler's random forests for classification and regression [EB/OL ] . http://CRAN.R-project.org/package=randomForest http://CRAN.R-project.org/package=randomForest . 2015 . 10 . 11 .
Nnet:feed-forward neural networks and multinomial log-linear models [EB/OL ] . http://CRAN.R-project.org/package=nnet http://CRAN.R-project.org/package=nnet . 2015 . 10 . 11 .
0
浏览量
1366
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构