浏览全部资源
扫码关注微信
中国科学院软件研究所基础软件国家工程研究中心,北京 100190
[ "穆海蓉(1990-),女,山西太原人,中国科学院软件研究所硕士生,主要研究方向为差分隐私保护、数据挖掘。" ]
[ "丁丽萍(1965-),女,山东青州人,中国科学院软件研究所研究员、博士生导师,主要研究方向为数字取证、系统安全与可信计算。" ]
[ "宋宇宁(1985-),男,黑龙江哈尔滨人,中国科学院软件研究所工程博士生,主要研究方向为差分隐私保护、数据挖掘。" ]
[ "卢国庆(1989-),男,山东章丘人,中国科学院软件研究所硕士生,主要研究方向为差分隐私保护、数据挖掘。" ]
网络出版日期:2016-09,
纸质出版日期:2016-09-25
移动端阅览
穆海蓉, 丁丽萍, 宋宇宁, 等. DiffPRFs:一种面向随机森林的差分隐私保护算法[J]. 通信学报, 2016,37(9):175-182.
Hai-rong MU, Li-ping DING, Yu-ning SONG, et al. DiffPRFs:random forest under differential privacy[J]. Journal on communications, 2016, 37(9): 175-182.
穆海蓉, 丁丽萍, 宋宇宁, 等. DiffPRFs:一种面向随机森林的差分隐私保护算法[J]. 通信学报, 2016,37(9):175-182. DOI: 10.11959/j.issn.1000-436x.2016169.
Hai-rong MU, Li-ping DING, Yu-ning SONG, et al. DiffPRFs:random forest under differential privacy[J]. Journal on communications, 2016, 37(9): 175-182. DOI: 10.11959/j.issn.1000-436x.2016169.
提出一种基于随机森林的差分隐私保护算法DiffPRFs,在每一棵决策树的构建过程中采用指数机制选择分裂点和分裂属性,并根据拉普拉斯机制添加噪声。在整个算法过程中满足差分隐私保护需求,相对于已有算法,该方法无需对数据进行离散化预处理,消除了多维度大数据离散化预处理对于分类系统性能的消耗,便捷地实现分类并保持了较高的分类准确度。实验结果验证了本算法的有效性以及相较于其他分类算法的优势。
A differential privacy algorithm DiffPRFs based on random forests was proposed.Exponential mechanism was used to select split point and split attribute in each decision tree building process
and noise was added according to Laplace mechanism.Differential privacy protection requirement was satisfied through overall process.Compared to existed algorithms
the proposed method does not require pre-discretization of continuous attributes which significantly reduces the performance cost of preprocessing in large multi-dimensional dataset.Classification is achieved conveniently and efficiently while maintains the high accuracy.Experimental results demonstrate the effectiveness and superiority of the algorithm compared to other classification algorithms.
DWORK C , . Differential privacy [C ] // The 33rd International Colloquium on Automata,Languages and Programming . Berlin:Spinger-Verlag , 2006 : 1 - 12 .
DWORK C . A firm foundation for private data analysis [J ] . Communications of the ACM , 2011 , 54 ( 1 ): 86 - 95 .
张啸剑 , 孟小峰 . 面向数据发布和分析的差分隐私保护 [J ] . 计算机学报 , 2014 , 37 ( 4 ): 927 - 949 .
ZHANG X J , MENG X F . Differential privacy in data publication and analysis [J ] . Chinese Journal of Computers , 2014 , 37 ( 4 ): 927 - 949 .
DWORK C , MCSHERRY F , NISSIM K , et al . Calibrating noise to sensitivity in private data analysis [C ] // Theory of Cryptography . Springer Berlin Heidelberg , 2006 : 265 - 284 .
MCSHERRY F , TALWAR K . Mechanism design via differential privacy [C ] // Foundations of Computer Science . 2007 : 94 - 103 .
范明 , 孟小峰 ,译 . 数据挖掘:概念与技术 [M ] . 北京 : 机械工业出版社 , 2012 .
FAN M MENG X F . Data minify:concepts and techniques [M ] . Beijing China Machine Press , 2012 .
BLUM A , DWORK C , MCSHERRY F , et al . Practical privacy:the SuLQ framework [C ] // The 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems . ACM , 2005 : 128 - 138 .
FRIEDMAN A , SCHUSTER A . Data mining with differential privacy [C ] // The 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . ACM , 2010 : 493 - 502 .
MOHAMMED N , CHEN R , FUNG B , et al . Differentially private data release for data mining [C ] // The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . ACM , 2011 : 493 - 501 .
ZHU T , XIONG P , XIANG Y , et al . An effective deferentially private data releasing algorithm for decision tree [C ] // Trust,Security and Privacy in Computing and Communications (TrustCom),2013 12th IEEE International Conference . IEEE , 2013 : 388 - 395 .
PATIL A , SINGH S . Differential private random forest [C ] // Advances in Computing,Communications and Informatics International Conference . IEEE , 2014 : 2623 - 2630 .
丁丽萍 , 卢国庆 . 面向频繁模式挖掘的差分隐私保护研究综述 [J ] . 通信学报 , 2014 , 35 ( 10 ): 200 - 209 .
DING L P , LU G Q . Survey of differential privacy in frequent pattern minify [J ] . Journal on Communications , 2014 , 35 ( 10 ): 200 - 209 .
卢国庆 , 张啸剑 , 丁丽萍 , 等 . 差分隐私下的一种频繁序列模式挖掘方法 [J ] . 计算机研究与发展 , 2015 , 52 ( 12 ): 2789 - 2801 .
LU G Q , ZHANG X J , DING L P , et al . Frequent sequential pattern mining under differential privacy [J ] . Journal of Computer Research and Development , 2015 , 52 ( 12 ): 2789 - 2801 .
BREIMAN L . Random forests [J ] . Machine Learning , 2001 , 45 ( 1 ): 5 - 32 .
QUINLAN J R , . Induction of decision trees [C ] // Readings in Knowledge Acquisition and Learning . San Francisco:Morgan Kaufmann Publishers Inc , 1993 : 349 - 361 .
MCSHERRY F , . Privacy integrated queries:an extensible platform for privacy-preserving data analysis [C ] // The 2009 ACM SIGMOD International Conference on Management of Data . ACM , 2009 : 19 - 30 .
0
浏览量
1556
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构