浏览全部资源
扫码关注微信
1. 福州大学物理与信息工程学院,福建 福州 350116
2. 福建江夏学院电子信息科学学院,福建 福州 350108
3. 福州大学数学与计算机科学学院,福建 福州 350116
4. 福州大学福建省网络计算与智能信息处理重点实验室,福建 福州 350116
5. 中国科学院计算技术研究所,北京 100086
[ "魏晶晶(1984-),女,福建平潭人,福州大学博士生,主要研究方向为网络文本观点挖掘。" ]
[ "陈畅(1991-),男,浙江江山人,福州大学硕士生,主要研究方向为社交网络、数据挖掘等。" ]
[ "廖祥文(1980-),男,福建泉州人,博士,福州大学副教授、硕士生导师,主要研究方向为Web信息检索与观点挖掘。" ]
[ "陈国龙(1965-),男,福建莆田人,博士,福州大学教授、博士生导师,主要研究方向为网络计算、智能信息处理等。" ]
[ "程学旗(1971-),男,安徽安庆人,博士,中国科学院计算技术研究所研究员、博士生导师,主要研究方向为网络科学与社会计算、互联网搜索与挖掘等。" ]
网络出版日期:2016-06,
纸质出版日期:2016-06-25
移动端阅览
魏晶晶, 陈畅, 廖祥文, 等. 基于受限非负张量分解的用户社会影响力分析[J]. 通信学报, 2016,37(6):154-162.
Jing-jing WEI, Chang CHEN, Xiang-wen LIAO, et al. User social influence analysis based on constrained nonnegative tensor factorization[J]. Journal on communications, 2016, 37(6): 154-162.
魏晶晶, 陈畅, 廖祥文, 等. 基于受限非负张量分解的用户社会影响力分析[J]. 通信学报, 2016,37(6):154-162. DOI: 10.11959/j.issn.1000-436x.2016125.
Jing-jing WEI, Chang CHEN, Xiang-wen LIAO, et al. User social influence analysis based on constrained nonnegative tensor factorization[J]. Journal on communications, 2016, 37(6): 154-162. DOI: 10.11959/j.issn.1000-436x.2016125.
针对传统社会影响力分析方法未能充分考虑观点和话题信息等问题,提出了一种基于受限非负张量分解的用户社会影响力分析方法。首先把社交媒介用户相互评论关系自然地表示成三阶张量,然后通过拉普拉斯话题约束矩阵控制张量分解过程,最后根据分解得到的潜在因子度量用户观点社会影响力。该方法的优点是能有效地从受限张量分解结果中检索出给定话题下用户的社会影响力,同时保持其社会影响力的极性分布。实验结果表明,该方法的性能优于OOLAM和TwitterRank等基准算法。
Existing models for measuring user social influence fail to integrate both opinion and topic information.Therefore
a new constrained nonnegative tensor factorization method combining user’s opinion and the topical relevance was proposed.The method represented user’s comment relations as 3-order tensor
factorized the comments tensor constrained by Laplacian topical matrix
and then measures user influence according to the latent factors resulting from the tensor factorization.Thus
the new method not only was capable to effectively calculate the strength of user social influence on given topic
but also kept the polarity allocation of social influence.The experimental result shows that the performance of the proposed method is better than that of the baseline methods such as OOLAM
TwitterRank
etc.
CUI P , WANG F , YANG S , et al . Item-level social influence prediction with probabilistic hybrid factor matrix factorization [C ] // AAAI . 2011 : 331 - 336 .
CUI P , WANG F , LIU S , et al . Who should share what?:item-level social influence prediction for users and posts ranking [C ] // The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval . ACM , 2011 : 185 - 194 .
RASHID A M , KARYPIS G , RIEDL J . Influence in ratings-based recommender systems:an algorithm- independent approach [C ] // The SIAM International Conference on Data Mining . 2005 : 556 - 560 .
BAKSHY E , HOFMAN J M , MASON W A , et al . Everyone's an influencer:quantifying influence on Twitter [C ] // The fourth ACM International Conference on Web Search and Data Mining . ACM , 2011 : 65 - 74 .
YANG J , LESKOVEC J . Modeling information diffusion in implicit networks [C ] // 2010 IEEE 10th International Conference on Data Mining(ICDM) . IEEE , 2010 : 599 - 608 .
SAKAKI T , OKAZAKI M , MATSUO Y . Earthquake shakes Twitter users:real-time event detection by social sensors [C ] // The 19th International Conference on World Wide Web . ACM , 2010 : 851 - 860 .
BAKSHY E , ECKLES D , YAN R , et al . Social influence in social advertising:evidence from field experiments [C ] // The 13th ACM Conference on Electronic Commerce . ACM , 2012 : 146 - 161 .
毛佳昕 , 刘奕群 , 张敏 , 等 . 基于用户行为的微博用户社会影响力分析 [J ] . 计算机学报 , 2014 , 37 ( 4 ): 791 - 800 .
MAO J X , LIU Y Q , ZHANF M , et al . Social influence analysis for micro-blog user based on user behavior [J ] . Chinese Journal of Computers , 2014 , 37 ( 4 ): 791 - 800 .
吴信东 , 李毅 , 李磊 . 在线社交网络影响力分析 [J ] . 计算机学报 , 2014 , 37 ( 4 ): 735 - 752 .
WU X D , LI Y , LI L . Influence analysis of online social networks [J ] . Chinese Journal of Computers , 2014 , 37 ( 4 ): 735 - 752 .
WENG J , LIM E P , JIANG J , et al . Twitterrank:finding topic-sensitive influential twitterers [C ] // The Third ACM International Conference on Web Search and Data Mining . ACM , 2010 : 261 - 270 .
CAI K , BAO S , YANG Z , et al . OOLAM:an opinion oriented link analysis model for influence persona discovery [C ] // The fourth ACM International Conference on Web Search and Data Mining . ACM , 2011 : 645 - 654 .
KOLDA T G , BADER B W . Tensor decompositions and applications [J ] . SIAM Review , 2009 , 51 ( 3 ): 455 - 500 .
DONG Z D , DONG Q . “ZhiHu” [EB/OL ] . http://www.keenAge.com http://www.keenAge.com .
CICHOCKI A , ZDUNEK R , PHAN A H , et al . Nonnegative matrix and tensor factorizations:applications to exploratory multi-way data analysis and blind source separation [M ] . John Wiley&Sons , 2009 : 42 - 46 .
HU X , TANG L , TANG J , et al . Exploiting social relations for sentiment analysis in microblogging [C ] // The Sixth ACM International Conference on Web Search and Data Mining . ACM , 2013 : 537 - 546 .
DAVIDSON I , GILPIN S , WALKER P B . Behavioral event data and their analysis [J ] . Data Mining and Knowledge Discovery , 2012 , 25 ( 3 ): 635 - 653 .
KOLDA T G , BADER B W , KENNY J P . Higher-order Web link analysis using multilinear algebra [C ] // Fifth IEEE International Conference on Data Mining . IEEE , 2005 : 242 - 249 .
0
浏览量
733
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构