浏览全部资源
扫码关注微信
华北电力大学电气与电子工程学院,北京102206
[ "崔灿(1991-),男,安徽蚌埠人,华北电力大学博士生,主要研究方向为电气信息技术、无线传感器网络、压缩感知理论等。" ]
[ "孙毅(1972-),男,辽宁朝阳人,博士,华北电力大学教授、硕士生导师,主要研究方向为电力系统通信与信息技术、无线传感器网络等。" ]
[ "陆俊(1976-),男,云南广南人,博士,华北电力大学副教授、硕士生导师,主要研究方向为无线传感器网络、电力系统通信和电气信息技术等。" ]
[ "郝建红(1960-),女,河北石家庄人,博士,华北电力大学教授、博士生导师,主要研究方向为物理电子学和电磁理论等。" ]
网络出版日期:2016-05,
纸质出版日期:2016-05-15
移动端阅览
崔灿, 孙毅, 陆俊, 等. 基于混合CS的WSN六边形格状优化分簇路由算法研究[J]. 通信学报, 2016,37(5):176-183.
Can CUI, Yi SUN, Jun LU, et al. Research on a hexagonal lattice optimal clustering routing algorithm based on hybrid CS for WSN[J]. Journal on communications, 2016, 37(5): 176-183.
崔灿, 孙毅, 陆俊, 等. 基于混合CS的WSN六边形格状优化分簇路由算法研究[J]. 通信学报, 2016,37(5):176-183. DOI: 10.11959/j.issn.1000-436x.2016104.
Can CUI, Yi SUN, Jun LU, et al. Research on a hexagonal lattice optimal clustering routing algorithm based on hybrid CS for WSN[J]. Journal on communications, 2016, 37(5): 176-183. DOI: 10.11959/j.issn.1000-436x.2016104.
建立基于混合 CS的六边形格状 WSN 分簇模型,定量分析网络数据传输次数与数据压缩比例和分簇大小的关系,并求解最优网络分簇个数。提出基于混合 CS的 WSN 六边形格状优化分簇路由算法,均衡网络通信开销的同时减少数据传输次数。通过仿真实验验证所提出的优化分簇模型与算法优于传统分簇模型,能有效降低网络数据传输次数。
A hexagon lattice clustering model for WSN was proposed based on hybrid CS.The relationship between data transmission times and compression ratio and clus er size was analyzed quantitatively to get optimal clustering number.Then
a hexagon lattice optimal clustering routing algorithm for WSN based on ybrid CS was proposed
to balance network communication overhead and reduce data transmission times.Simulation experiment proved that the optimal clustering model and algorithm proposed are better than traditional ones in reducing data transmis-sion times in WSN.
马祖长 , 孙怡宁 , 梅涛 . 无线传感器网络综述 [J ] . 通信学报 , 2004 , 25 ( 4 ): 114 - 124 .
MA Z C , SUN Y N , MEI T . Wireless sensor network review [J ] . Jour-nal on Communications , 2004 , 25 ( 4 ): 114 - 124 .
HEINZELMAN W R , CHANDRAKASAN A , BALAKRISHNAN H . Energy-efficient communication protocol for wireless microsensor networks [C ] // The 33rd Annual Hawaii International Conference on System Sciences . c2000 : 8020 - 8020 .
YOUNIS O , FAHMY S . HEED:a hybrid,energy-efficient,distributed clustering approach for ad hoc sensor networks [J ] . IEE Transactions on Mobile Computing , 2004 , 3 ( 4 ): 366 - 379 .
DONOHO D L . Compressed sensing [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
WANG J , TANG S , YIN B , et al . Data gathering in wireless se networks through intelligent compressive sensing [C ] // OM,2012 Proceedings IEEE , c2012 : 603 - 611 .
FAZEL F , FAZEL M , STOJANOVIC M . Random access compressed sensing for energy-efficient underwater sensor networks [J ] . IEEE Journal on Selected Areas in Communications , 2011 , 29 ( 8 ): 1660 - 1670 .
HAUPT J , BAJWA W U , RABBAT M , et al . Compressed sensin for networked data [J ] . Signal Processing Magazine IEEE , 2008 , 25 ( 2 ): 92 - 101 .
LUO C , SUN J , et al . Compressive data gathering for large-scale wireless sensor networks [C ] // The 15th Annual Internation-al Conference on Mobile Computing and Networking . ACM , c2009 : 145 - 156 .
XIANG L , LUO J , VASILAKOS A . Compressed data aggregation for energy efficient wireless sensor networks [C ] // 2011 8th Annual IEEE Communications Society Conference on Sensor,Mesh and Hoc Communications and Networks(SECON) , c2011 : 46 - 54 .
蒋文贤 . 压缩感知的能量异构WSN分簇路由协议 [J ] . 传感技术学报 , 2013 ,( 6 ): 894 - 900 .
JIANG W X . Energy heterogeneous clustering routing protocol based on compressed sensing [J ] . Journal of Sensing Technology , 2013 ,( 06 ): 894 - 900 .
XIE R , JIA X . Transmission efficient clustering method for wireless sensor networks using compressive sensing [J ] . IEEE Transactions on Parallel & Distributed Systems , 2013 , 25 ( 3 ): 1 .
WANG D , LIN L , XU L . A study of subdividing hexagon-clustered WSN for power saving:analysis and simulation [J ] . Ad Hoc Networks , 2011 , 9 ( 7 ): 1302 - 1311 .
LUCKJIFF G , DOBSON I . Power spectrum of a sigma-delta modula-tor with hexagonal vector quantization and constant input [C ] // The 1999 IEEE International Symposium on Circuits and Systems.IS-CAS'99 . c1999 : 270 - 273 .
TROPP J A , GILBERT A C . Signal recovery from random measure-ments via orthogonal matching pursuit [J ] . IEEE Transactions on In-formation Theory , 2007 , 53 ( 12 ): 4655 - 4666 .
CANDES E J , ROMBERG J , TAO T . Robust uncertainty princ les:exact signal reconstruction from highly incomplete frequency infor-mation [J ] . IEEE Transactions on Information Theory , 2004 , 52 ( 2 ): 489 - 509 .
LUO C , WU F , SUN J , et al . Efficient measurement generation and pervasive sparsity for compressive data gathering [J ] . EE Transac-tions on Wireless Communications , 2010 , 9 ( 12 ): 3728 - 3738 .
LUO J , XIANG L , ROSENBERG C . Does compressed sensing improve the throughput of wireless sensor networks? [C ] 2010 IEEE International Conference on Communications(ICC) , c2010 : 1 - 6 .
0
浏览量
897
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构