浏览全部资源
扫码关注微信
南开大学计算机与控制工程学院,天津300350
[ "王昌海(1987-),男,山东聊城人,南开大学博士生,主要研究方向为动作识别、移动情景感知、室内定位。" ]
[ "张建忠(1964-),男,河北石家庄人,博士,南开大学教授、博士生导师,主要研究方向为移动计算、对等计算、网络安全。" ]
[ "徐敬东(1965-),女,辽宁锦州人,博士,南开大学教授、博士生导师,主要研究方向为移动计算、信息安全、网络管理。" ]
[ "许昱玮(1985-),男,安徽黄山人,博士,南开大学讲师、硕士生导师,主要研究方向为移动计算、无线网络、车载自组织网络。" ]
网络出版日期:2016-05,
纸质出版日期:2016-05-15
移动端阅览
王昌海, 张建忠, 徐敬东, 等. 基于HMM的动作识别结果可信度计算方法[J]. 通信学报, 2016,37(5):143-151.
Chang-hai WANG, Jian-zhong ZHANG, Jing-dong XU, et al. Identifying the confidence level of activity recognition via HMM[J]. Journal on communications, 2016, 37(5): 143-151.
王昌海, 张建忠, 徐敬东, 等. 基于HMM的动作识别结果可信度计算方法[J]. 通信学报, 2016,37(5):143-151. DOI: 10.11959/j.issn.1000-436x.2016102.
Chang-hai WANG, Jian-zhong ZHANG, Jing-dong XU, et al. Identifying the confidence level of activity recognition via HMM[J]. Journal on communications, 2016, 37(5): 143-151. DOI: 10.11959/j.issn.1000-436x.2016102.
针对当前动作识别可信度计算方法中混淆率高、不适用于迁移学习等问题,提出一种基于样本上下文信息的可信度计算方法(S-HMM
sliding windows hidden Markov model)。该方法使用隐马尔可夫模型(HMM
hidden Markov model)理论对识别结果序列建模,将样本所在序列识别正确的概率作为识别结果的可信度,避免了当前可信度计算方法依赖于样本在特征空间中分布的问题。实验使用真实场景中的数据进行仿真,结果表明,与现有方法相比,该方法可将可信度混淆率降低37%左右。
A context-based method to identify the confidence level of activ recognition was proposed
referred to as S-HMM(sliding window hidden Markov model)
which reduced the confusion rate and facilitated the transfer learning.With S-HMM
the activity recognition sequence was modeled as HMM(hidden Markov model)and the corresponding probability was adopted as the confidence level.This
S-HMM removed the dependency of the confidence level on the sample distribution in the feature space.S-HMM is extensively evaluated based on real-life activity data
demonstrat-ing a reduced confusion rate of 37% when compared to the state-of-the-art methods.
HOSEINI S A , GLUHAKA , TAFAZOLLI R . A survey on smart-phone-based systems for opportunistic user context recognition [J ] . ACM Computing Surveys(CSUR) , 2013 , 45 ( 3 ): 1 - 27 .
BULLING A , BLANKE U , SCHIELE B . A tutorial on human activity recognition using body-worn inertial sensors [J ] . ACM Computing Surveys(CSUR) , 2014 , 46 ( 3 ): 57 - 76 .
CHIANG J H , YANG P C , TU H . Pattern analysis in daily physica activity data for personal health management [J ] . Pervasive and Mobile Computing , 2014 , 13 ( 4 ): 13 - 25 .
ZHOU B , LI Q , MAO Q , et al . Activity sequence-based indoor pede-strian localization using smartphones [J ] . IEEE Transactions on Hu-man-Machine Systems , 2015 , 45 ( 5 ): 562 - 574 .
MARTÍN H , BERNARDOS A M , IGLESIAS J , et al . Activity log-ging using lightweight classification techniques in mobile devices [J ] . Personal and Ubiquitous Computing , 2013 , 17 ( 4 ): 675 - 695 .
SUAREZ I , JAHN A , ANDERSON C , et al . Improved activity recog-nition by using enriched acceleration data [C ] // The 2015 ACM Interna-tional Joint Conference on Pervasive and Ubiquitous Computing . ACM , C2015 : 1011 - 1015 .
REISS A , HENDEBY G , STRICKER D . A novel confidence-based multiclass boosting algorithm for mobile physical acti ity monitor-ing [J ] . Personal and Ubiquitous Computing , 2015 , 19 ( 1 ): 105 - 121 .
YOUNES R , MARTIN T L , JONES M . Activity classification at a higher level:what to do after the classifier does its best [C ] // The 2015 ACM Inter-national Symposium on Wearable Computers . ACM , C2015 : 83 - 86 .
CHEN Y Q , ZHAO Z T , WANG S Q , et al . Extreme learning ma-chine-based device displacement free activity recognition model [J ] . Soft Computing , 2012 , 16 ( 9 ): 1617 - 1625 .
DENG W Y , ZHENG Q H , WANG Z M . Cross-person activity recog-nition using reduced kernel extreme learning machine [J ] . Neural Networks , 2014 , 53 ( 1 ): 1 - 7 .
赵中堂 . 自适应行为识别中的迁移学习方法研究 [D ] . 北京:中国科学院大学 , 2013 .
ZHAO Z T . Transfer learning methods for adaptive activity recogni-tion [D ] . Beijing:University of Chinese Academy of Sciences , 2013 .
QUINLAN J R . Induction of decision trees [J ] . Machine Learning , 1986 , 1 ( 1 ): 81 - 106 .
COVER T M , HART P E . Nearest neighbor pattern classification [J ] . IEEE Transactions on Information Theory , 1967 , 13 ( 1 ): 21 - 27 .
CORTES C , VAPNIK V . Support-vector networks [J ] . Machine Learn-ing , 1995 , 20 ( 3 ): 273 - 297 .
FREDERICK J . Statistical methods for speech recognition [M ] . The United States : MIT Press , 1997 .
杨晓峰 , 孙明明 , 胡雪蕾 , 等 . 基于改进隐马尔可夫模型的网络攻击检测方法 [J ] . 通信学报 , 2010 , 31 ( 3 ): 95 - 101 .
YANG X F , SUN M M , HU X L , et al . Improved HMM model based method for detecting cyber attacks [J ] . Journal on Comm nications , 2010 , 31 ( 3 ): 95 - 101 .
黄飞跃 , 徐光祐 . 视角无关的动作识别 [J ] . 软件学报 , 2008 , 19 ( 7 ): 1623 - 1634 .
HUANG F Y , XU G Y . Viewpoint independent action recognition [J ] . Journal of Software , 2008 , 19 ( 7 ): 1623 - 1634 .
AGGARWAL J K , RYOO M S . Human activity analysis:a rev w [J ] . ACM Computing Surveys(CSUR) , 2011 , 43 ( 3 ): 1 - 43 .
KASTEREN T , NOULAS A , ENGLEBIENNE G , et al . Accurate activity recognition in a home setting [C ] // The 10th International Con-ference on Ubiquitous Computing . Seoul , C2008 : 1 - 9 .
SHEHROZ S K , MICHELLE E K , JESSE H , et al . owards the detec-tion of unusual temporal events during activities using HMMs [C ] // The 14th International Conference on Ubiquitous Computing . Seattle , C2012 : 1075 - 1084 .
FORKAN A R M , KHALIL I , TARI Z , et al . A context-aware ap-proach for long-term behavioural change detection and abnormality prediction in ambient assisted living [J ] . Pattern Reco nition , 2015 , 48 ( 3 ): 628 - 641 .
ZHONG M , WEN J , HU P , et al . Advancing Android activit gni-tion service with Markov smoother [C ] // 2015 IEEE International Con-ference on Pervasive Computing and Communication Workshops(PerCom Workshops) . IEEE , C2015 : 38 - 43 .
0
浏览量
729
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构