浏览全部资源
扫码关注微信
1. 南京信息工程大学电子与信息工程学院,江苏 南京210044
2. 南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京210044
3. 南京信息工程大学江苏省气象探测与信息处理重点实验室,江苏 南京210044
4. 南京信息工程大学数学与统计学院,江苏 南京210044
[ "汪美玲(1988-),女,安徽芜湖人,南京信息工程大学硕士生,主要研究方向为图像处理、模式识别等。" ]
[ "周先春(1974-),男,安徽合肥人,南京信息工程大学副教授、硕士生导师,主要研究方向为信号与信息处理。" ]
[ "周林锋(1991-),男,安徽蚌埠人,南京信息工程大学硕士生,主要研究方向为信号处理、图像处理等。" ]
[ "石兰芳(1976-),女,安徽合肥人,南京信息工程大学副教授、硕士生导师,主要研究方向为非线性分析。" ]
网络出版日期:2016-04,
纸质出版日期:2016-04-25
移动端阅览
汪美玲, 周先春, 周林锋, 等. 全变分耦合图像去噪模型[J]. 通信学报, 2016,37(4):182-191.
Mei-ling WANG, Xian-chun ZHOU, Lin-feng ZHOU, et al. Coupling image denoising model based on total variation[J]. Journal of communications, 2016, 37(4): 182-191.
汪美玲, 周先春, 周林锋, 等. 全变分耦合图像去噪模型[J]. 通信学报, 2016,37(4):182-191. DOI: 10.11959/j.issn.1000-436x.2016085.
Mei-ling WANG, Xian-chun ZHOU, Lin-feng ZHOU, et al. Coupling image denoising model based on total variation[J]. Journal of communications, 2016, 37(4): 182-191. DOI: 10.11959/j.issn.1000-436x.2016085.
针对TV模型去噪后图像容易产生“阶梯效应”的现象,提出一种全变分耦合图像去噪模型。首先,根据去噪过程中图像梯度的变化趋势,构造一个趋势保真项,该保真项不但能有效去除图像噪声,而且能抑制“阶梯效应”。然后用小波在频域里对图像进行系数分解,利用Canny 算法的边缘检测特性,设计控制函数,控制能量的扩散方向,保持了TV模型和趋势保真项的优点,能够在保护图像边缘纹理等细节信息的同时,抑制“阶梯效应”。实验结果表明,新模型的峰值信噪比、结构相似度、视觉效果均有显著提高。另外,所提模型的运行时间较短。
The total variation (TV) model used in image denoising may produce “staircase effect”. A coupling image de-noising model based on total variation was proposed. First
a trend fidelity term based on the change tendency of image gradient was established. The fidelity term could not only remove image noise
but also restrain “staircase effect”. Then
wavelet was used to decompose coefficient in frequency domain
control based on the edge detection ability of Canny algorithm were designed. The control functions control energy spread direction
the advantages of TV model and trend fidelity term are maintained
edge and texture details were protected
and “staircase effect'' was also suppressed. Experiment results show that peak signal to noise ratio (PSNR)
structure similarity (SSIM) and visual effects of the nov-el model are much better. Moreover
the running time of the novel model is shorter.
LI Z G , ZHENG J H , ZHU Z J . Weighted guided image filtering [J ] . IEEE Transactions on Image Processing , 2015 , 24 ( 1 ): 120 - 128 .
YANG X , GAO X B , TAO D C , et al . An efficient MRF embedded level set method for image segmentation [J ] . IEEE Transactions on Image Processing , 2015 , 24 ( 1 ): 9 - 21 .
SURYA PRASATH V B , VOROTNIKOV D . Weighted and well-balanced anisotropic diffusion scheme for image denoising and restoration [J ] . Nonlinear Analysis: Real World Applica ions , 2014 , 17 ( 1 ): 33 - 46 .
YANG M , ZHANG J H , MENG F Y , et al . Denoising method of X-ray phase contrast DR image for TRISO-coated fuel particles [J ] . Particu-ology , 2013 , 11 ( 6 ): 695 - 702 .
LIU P , HUANG F , LI G Q , et al . Remote-sensing image denoising using partial differential equations and auxiliary ima as priors [J ] . IEEE Geoscience and Remote Sensing Letters , 2012 , 9 ( 3 ): 358 - 362 .
席志红 , 赵蓝飞 , 张驰 , 等 . 基于变分模型的梯度域色阶映射算法 [J ] . 通信学报 , 2015 , 36 ( 1 ): 1 - 8 .
XI Z H , ZHAO L F , ZHANG C , et al . Tone mapping based on varia-tional model in gradient domain [J ] . Journal on Communications , 2015 , 36 ( 1 ): 1 - 8 .
RUDIN L , OSHER S , FATEMI E . Nonlinear total variation based noise removal algorithm [J ] . Physica D , 1992 , 60 ( 1 - 4 ): 259 - 268 .
HUANG Y M , NG M , WEN Y W . A new total variation method for multiplicative noise removal [J ] . SIAM Journal on Image Sciences , 2009 , 2 ( 1 ): 20 - 40 .
HAM B , MIN D , SOHN K . Revisiting the relationship between adap-tive smoothing and anisotropic diffusion with modified filters [J ] . IEEE Transactions on Image Processing , 2013 , 22 ( 3 ): 1096 - 1101 .
WU J , TANG C . PDE-based random-valued impulse noise removal based on new class of controlling functions [J ] . IEEE Transactions on Image Processing , 2011 , 20 ( 9 ): 2428 - 2438 .
YANG M , LIANG J K , ZHANG J H , et al . Non-local means theory based Perona-Malik model for image denoising [J ] . Neurocomputing , 2013 , 120 ( 1 ): 262 - 267 .
ZHANG K K , GAO X B , LI X L . Single image super-resolution with non-local means and steering kernel regression [J ] . IEEE Transactions on Image Processing , 2012 , 21 ( 11 ): 4544 - 4555 .
DABOV K , FOI A , KATKOVNIK V , et al . Image denoising by sparse 3D transform domain collaborative filtering [J ] . IEEE Transactions o Image Processing , 2007 , 16 ( 8 ): 2080 - 2095 .
DELEDALLE C A , DENIS L , TUPIN F . Iterative weighted maximum likelihood denoising with probabilistic patch-based weights [J ] . IEEE Transactions on Image Processing , 2009 , 18 ( 12 ): 2661 - 2672 .
DONOHO D L . De-noising by soft-thresholding [J ] . IEEE Transactions on Information Theory , 1995 , 41 ( 3 ): 613 - 627 .
ZHANG Y H , DING Y , WANG L H . The improvement of ROF de-noising model based on AOS and fourth-order PDE [J ] . Procedia Engineering , 2011 , 15 ( 1 ): 2778 - 2782 .
NIKPOUR M , HASSANPOUR H . Using diffusion equation for im-proving performance of wavelet-based image denoising techniques [J ] . IET Image Processing , 2010 , 4 ( 6 ): 452 - 462 .
KAMILOV U , BOSTAN E , UNSER M . Wavelet shrinkage with con-sistent cycle spinning generalizes total variation denoising [J ] . IEEE Signal Processing Letters , 2012 , 19 ( 4 ): 187 - 190 .
朱为 , 李国辉 , 途丹 . 一种基于第二代曲波变换的尺度相关图像去噪方法 [J ] . 中国图象图形学报 , 2008 , 13 ( 12 ): 2281 - 2285 .
ZHU W , LI G H , TU D . A scale correlation image denoisi g method based on the second generation curvelet transform [J ] . Journal of Image and Graphics , 2008 , 13 ( 12 ): 2281 - 2285 .
贾建 , 陈莉 . 基于正态逆高斯模型的非下采样Contourlet变换图像去噪模型 [J ] . 电子学报 , 2011 , 39 ( 7 ): 1563 - 1568 .
JIA J , CHEN L . Using normal inverse Gaussian model for image de-noising in NSCT domain [J ] . Acta Electronica Sinica , 2011 , 39 ( 7 ): 1563 - 1568 .
刘金华 , 佘堃 . 基于双树复小波与波原子的图像扩散滤波 [J ] . 物理学报 , 2011 , 60 ( 12 ): 124203-1 - 124203-2 .
LIU H , SHE K . Image diffusion filtering based on dua tree complex wavelet and wave atoms [J ] . Acta Physica Sinica , 2011 , 60 ( 12 ): 124203-1 - 124203-2 .
XU Q , VARADARAJAN S , CHAKRABARTI C , et al . A distributed canny edge detector: algorithm and FPGA implementation [J ] . IEEE Transactions on Image Processing , 2014 , 23 ( 7 ): 2944 - 2959 .
WEICKERT J , TER H , ROMENY B M , et al . Efficient and reliable schemes for nonlinear diffusion filtering [J ] . IEEE Transactions on Image Processing , 1998 , 7 ( 3 ): 398 - 410 .
WANG Z , BOVIK BOVIK A C , et al . Image quality assessment: from error visibility to structural similarity [J ] . IEEE Transactions on Image Processing , 2004 , 13 ( 4 ): 600 - 612 .
CANNY J . A computational approach to edge detection [J ] . IEEE Transactions Pattern Analysis and Machine Intelligence , 1986 , 8 ( 6 ): 679 - 698 .
0
浏览量
625
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构