浏览全部资源
扫码关注微信
1. 中国科学院计算技术研究所,北京100080
2. 国家计算机网络应急技术处理协调中心,北京100029
[ "贺敏(1982-),女,山西忻州人,中国科学院计算技术研究所博士生,主要研究方向为网络信息安全、舆情分析、自然语言处理等。" ]
[ "徐杰(1982-),男,山西五寨人,博士,国家计算机网络应急技术处理协调中心工程师,主要研究方向为网络信息安全和多媒体技术。" ]
[ "杜攀(1981-),男,河南南阳人,中国科学院计算技术研究所助理研究员,主要研究方向为文本挖掘、信息检索、机器学习等。" ]
[ "程学旗(1971-),男,安徽安庆人,中国科学院计算技术研究所研究员、博士生导师,主要研究方向为信息检索、文本挖掘、社会计算等。" ]
[ "王丽宏(1967-),女,辽宁沈阳人,国家计算机网络应急技术处理协调中心副总工程师、研究员,主要研究方向为网络信息安全、舆情分析等。" ]
网络出版日期:2016-03,
纸质出版日期:2016-03-25
移动端阅览
贺敏, 徐杰, 杜攀, 等. 基于时间序列分析的微博突发话题检测方法[J]. 通信学报, 2016,37(3):48-54.
Min HE, Jie2 XU, Pan1 DU, et al. Bursty topic detection method for microblog based on time series analysis[J]. Journal on communications, 2016, 37(3): 48-54.
贺敏, 徐杰, 杜攀, 等. 基于时间序列分析的微博突发话题检测方法[J]. 通信学报, 2016,37(3):48-54. DOI: 10.11959/j.issn.1000-436x.2016052.
Min HE, Jie2 XU, Pan1 DU, et al. Bursty topic detection method for microblog based on time series analysis[J]. Journal on communications, 2016, 37(3): 48-54. DOI: 10.11959/j.issn.1000-436x.2016052.
针对微博信息噪音大、新颖度难以判断的问题,在动量模型的基础上进行优化,提出了基于时序分析的微博突发话题检测方法。通过动量模型提取候选突发特征后,对特征的动量时间序列分别借鉴信号频域分析理论和股票趋势分析理论进行建模,分析特征的频域特性来识别频繁伪突发特征,分析特征的新颖程度来识别间歇性伪突发特征,合并过滤后的有效突发特征形成突发话题。微博数据实验表明,该方法有效提高了突发话题检测的准确率和F值。
Detecting bursty topics from microblogs was an important task to understand the current events attracting a large number of internet users.However
the existing hods suitable for news articles cannot be adopted directly for microblogs.Because microblogs have unique characteristics compared wi formal texts
including diversity
dynamic and noise.A detection method for microblog bursty topic was proposed based on time series analysis
which was an op-timization method of momentum model.The candidate bursty features were extracted by momentum model.The time se-ries of feature's momentum were modled by frequency domain analysis theory and stock trend analysis theory.The fre-quently pseudo-bursty features were filtered according to analysis results of frequency-domain characteristics.The inter-mittently pseudo-bursty features were filtered according to the novelty analysis result through stock trend theory.The bursty topics were finally emerged with combination of effective bursty features.The experiments are conducted on a real Sina microblog data set.It show that the proposed method improves the precis and F-measure remarkably compared with the momentum modle.
FUNG G , YU J , YU P , et al . Parameter free bursty events detection in text streams [C ] // Conference on 31th VLDB . Trondheim,Norway , c 2005 : 181 - 192 .
HE Q , CHANG K , LIM E . Analyzing feature trajectories for event detection [C ] // Conference on 30th SIGIR . Amsterdam , c 2007 : 208 - 214 .
KLEINBERG J . Bursty and hierarchical structure in steam [C ] // Con-ference on KDD'02 . Edmonton,Alberta,Canada , c 2002 : 91 - 101 .
CUI A , ZHANG M , LIU Y , et al . Discover breaking events with popu-lar hashtags in twitter [C ] // Conference on CIKM'12 . Maui,HI,USA , c 2012 : 1796 - 1798 .
DU Y Y , HE Y X , TIAN Y . Microblog bursty topic detection based on userrelationship [C ] // 6th IEEE Information Technology and Artificial Intelligence Conference . Chongqing,China , c 2011 : 260 - 263 .
SHIVA P K , PREM M , ARINDAM B . Emerging topic detection using dictionary learning [C ] // Conference on CIKM'11 . Glasgow,Scotland,UK , c 2011 : 745 - 754 .
ZHU M L , HU W M , WU O . Topic detection and tracking for threaded discussion communities [C ] // IEEE/WIC/ACM International Conferences on Web Intelligences and Intelligent Agent Technology . c 2008 : 77 - 83 .
贺敏 , 杜攀 , 张瑾 , 等 . 基于有意义串动量模型的微博突发话题检测方法 [J ] . 计算机研究与发展 , 2015 , 52 ( 5 ): 1022 - 1028 .
HE M , DU P , ZHANG J , et al . Microblog bursty topic detection me-thod based on momentum model [J ] . Journal of Computer h and Development , 2015 , 52 ( 5 ): 1022 - 1028 .
贺敏 . 面向互联网的有意义串挖掘 [D ] . 北京 : 中国科学院计算技术研究所 , 2007 .
HE M . Web-oriented Chinese meaningful string mining [D ] . Beijing : Insti-tute of Computing Technology,Chinese Academy of Sciences , 2007 .
ALAN R , MAUSAM O E . Open domain event extraction from twit-ter [C ] // Conference on KDD'12 . Beijing,China , c 2012 : 1104 - 1112 .
ANDREW J , YASHAR M , JOEMON M . Building a large-scale cor-pus for evaluating event detection on twitter [C ] // Conference on CIKM'13 . San Francisco,CA,USA , c 2013 : 409 - 418 .
DIAO Q M , JIANG J , ZHU F D , et al . Finding bursty topics from microblogs [C ] // The 50th Annual Meeting of the Association for Computational Linguistics . Jeju,Korea , c 2012 : 536 - 544 .
POPESCU A M , PENNACCHIOTTI M , PARANJPE D A . Extracting events and event descriptions from twitter [C ] // Conference on WWW'11 . Hyderabad,India , c 2011 : 105 - 106 .
LI CL , SUN AX , DATTA A . Twevent:segment-based event detection from tweets [C ] // Conference on CIKM'12 . Maui,HI,USA , c 2012 : 155 - 164 .
0
浏览量
1230
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构