浏览全部资源
扫码关注微信
国家数字交换系统工程技术研究中心,河南 郑州450002
[ "常振超(1987-),男,河北邯郸人,国家数字交换系统工程技术研究中心博士生,主要研究方向为社会网络结构分析。" ]
[ "陈鸿昶(1964-),男,河南郑州人,国家数字交换系统工程技术研究中心教授、博士生导师,主要研究方向为社会网络分析。" ]
[ "黄瑞阳(1986-),男,福建漳州人,博士,国家数字交换系统工程技术研究中心讲师,主要研究方向为社会网络分析。" ]
[ "于洪涛(1970-),男,河南郑州人,国家数字交换系统工程技术研究中心教授、硕士生导师,主要研究方向为社会网络分析。" ]
[ "刘阳(1986-),男,湖北随州人,国家数字交换系统工程技术研究中心博士生,主要研究方向为社会网络分析。" ]
网络出版日期:2016-02,
纸质出版日期:2016-02-15
移动端阅览
常振超, 陈鸿昶, 黄瑞阳, 等. 基于非负矩阵分解的半监督动态社团检测[J]. 通信学报, 2016,37(2):132-143.
Zhen-chao CHANG, Hong-chang CHEN, Rui-yang HUANG, et al. Semi-supervised dynamic community detection based on non-negative matrix factorization[J]. Journal on communications, 2016, 37(2): 132-143.
常振超, 陈鸿昶, 黄瑞阳, 等. 基于非负矩阵分解的半监督动态社团检测[J]. 通信学报, 2016,37(2):132-143. DOI: 10.11959/j.issn.1000-436x.2016039.
Zhen-chao CHANG, Hong-chang CHEN, Rui-yang HUANG, et al. Semi-supervised dynamic community detection based on non-negative matrix factorization[J]. Journal on communications, 2016, 37(2): 132-143. DOI: 10.11959/j.issn.1000-436x.2016039.
如何有效融合不同时刻的网络结构信息,是影响复杂网络中动态社团检测算法检测性能的关键和难点。基于此,提出了一种基于非负矩阵分解的半监督动态社团检测方法 SDCD-NMF,该方法首先有效提取了历史时刻所包含的稳定结构单元,然后将其作为正则化监督项,指导当前时刻的网络社团检测。在真实网络数据集上的实验表明,所提方法与已有方法相比具备更高的社团划分质量,更有利于探索网络的演变与发展规律。
How to effectively combine the network structures on different time points was the key and difficulty to affect the performance of detection algorithms. Based on this
a semi-supervised dynamic community algorithm SDCD based on non-negative matrix factorization
which effectively extracted the historical stability structure unit firstly
and then use it as a regularization item supervision of nonnegative matrix decomposition
to guide the network community detection on current moment. Experiments on the real network dat sets show that the method has a higher community detection quality compared with existing methods
which can accurately mine the relationship among different time
and explore network evolution and the law of development more adva geously.
FORTUNATO S . Community detection in graphs [J ] . Physics Reports , 2010 , 486 ( 3 - 5 ): 75 - 174 .
GIRVAN M , NEWMAN M E J . Community structure in social and biological networks [J ] . Proc Natl Acad Sci , 2002 , 99 ( 2 ): 7821 - 7826 .
LUXBURG U . A tutorial on spectral clustering [J ] . Statistics and Computing , 2007 , 17 ( 4 ): 395 - 416 .
YANG L , CAO X C , JIN D . A unified semi-supervised community detection framework using latent space graph regularization [J ] . IEEE Transactions on Cybernetics, to Appear 2015, DOI: 10. 1109/TCYB , 2014 .2377154.
ZHANG Z Y . Community structure detection in complex networks withpartial background information [J ] . Europhys Lett , 101 ( 4 ):Art. ID 48005.
郭昆 , 郭文忠 , 邱启荣 , 等 . 基于局部近邻传播及用户特征的社区识别算法 [J ] . 通信学报 , 2015 , 36 ( 2 ): 2015035 - 1 - 2015035 - 12 .
GUO K , GUO W Z , QIU Q R , et al . Community detection algorithm based on local affinity propagation and user profile [J ] . Journal of Communications , 2015 , 36 ( 2 ): 2015035 - 1 - 2015035 - 12 .
卫红权 , 陈鸿昶 , 刘力雄 , 等 . 基于强度排序的通信社区检测算法 [J ] . 通信学报 , 2014 , 35 ( 10 ): 165 - 170 .
WEI H Q , CHEN H Q , LIU L X , et al . Communication community detection algorithm based on ranking of strength [J ] . Journal of Com-munications , 2014 , 35 ( 10 ): 165 - 170 .
EUSTACE J , WANG X Y , CUI Y Z , et al . Overlapping commu ity detection using neighborhood ratio matrix [J ] . Physica A , 2015 , 421 ( 2015 ): 510 - 521 .
CHAKRABARTI D , KUMAR R , TOMKINS A S , et al . Evolutionary clustering [C ] // The 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . c2006 : 554 - 560 .
CAZABET R , AMBLARD F . Dynamic community detection [M ] . Encyclopedia of Social Network Analysis and Mining . Springer New York Press , 2014 .
CHARU A , KARTHIK S . Evolving network analysis: a survey [J ] . ACM Computing Surveys , 2014 , 47 ( 1 ): 1 - 36 .
LEE D D , SEUNG H S . Learning the parts of objects by non-negative matrix factorization [J ] . Nature , 1999 , 401 ( 6755 ): 788 - 791 .
LAI J H , WANG C D , YU P . Dynamic community detection i weighted graph streams [C ] // The 2013 SIAM International Conference on Data Mining . c2013 : 151 - 161 .
CHENG Y , REGE M , DONG M , et al . Non-negative matrix factorization for semi-supervised data clustering [J ] . Knowledge and Information Systems , 2008 , 17 ( 3 ): 355 - 379 .
WANG H , NIE F P , HUANG H . Nonnegative matrix tri-factorization based high-order co-clustering and its fast implementation [C ] // The 2011 SIAM International Conference on Data Mining . c2011 : 784783 .
尚凡华 . 基于低秩结构学习数据表示 [D ] . 西安 :西安电子科技大学 , 2012 .
SHANG F H . The low rank structure learning based on data represen-tation [D ] . Xi'an: Xidian University , 2012 .
CAI D , HE X F , HAN J W , et al . Graph regularized non-negative matrix factorization for data representation [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 8 ( 33 ): 1548 - 1560 .
SUN J M , PAPADIMITRIOU S , YU P S , et al . Graphscope: parameter-free mining of large time-evolving graphs [C ] // The 13th ACM SIGKDD Int’l Conf on Knowledge Discovery and Data Minig . c2007 : 687 - 696 .
黄永锋 , 董永强 , 张三峰 , 等 . 基于社会特征周期演化的机会移动网络路由转发策略 [J ] . 通信学报 , 2015 , 36 ( 3 ): 2015055 .
HUANG Y F , DONG Y Q , ZHANG S F , et al . Message forward ng based on periodically evolving social characteristics in opportunistic mobile networks [J ] . Journal of Communications , 2015 , 36 ( 3 ): 2015055 - 1 — 2015055 - 12 .
NING H Z , XU W , CHI Y , et al . Incremental spectral clustering by efficiently updating the eigen-system [J ] . Pattern Recognition , 2010 , 43 ( 1 ): 113 - 127 .
单波 , 姜守旭 , 张硕 . IC:动态社会关系网络社区结构的增量识别算法 [J ] . 软件学报 , 2009 , 20 ( 1 ): 184 - 192 .
SHAN B , JINAG S X , ZHANG S . IC: incrementalalgorithm for community identification in dynamic socialnetworks [J ] . Journal of Software , 2009 , 20 ( 1 ): 184 - 192 .
肖杰斌 , 张绍武 . 基于随机游走和增量相关节点的动态网络社团挖掘算法 [J ] . 电子与信息学报 , 2013 , 35 ( 4 ): 977 - 981 .
XIAO J B , ZHANG S W . An algorithm of integrating random walk and increment correlative vertexes for mining communit of dynamic networks [J ] . Journal of Electronics & Information Technology , 2013 , 35 ( 4 ): 977 - 981 .
郭进时 , 汤红波 , 王晓雷 . 基于社会网络增量的动态社区组织探测 [J ] . 电子与信息学报 , 2013 , 35 ( 9 ): 2240 - 2246 .
GUO J S , TANG H B , WANG X L . A dynamic community structure detection scheme based on social network incremental [J ] . Journal of Electronics & Information Technology , 2013 , 35 ( 9 ): 2240 - 2246 .
MIGUEL A , SPIROS P , STEPHAN G , et al . 1Com2: fast automatic discovery of temporal ('Comet')communities [C ] // The PAKDD . c2014 : 271 - 283 .
NIGN H Z , XU W , CHI Y , et al . Incremental spectral clu ing with application to monitoring of evolving blog communities [C ] // The 2007 SIAM International Conference on Data Mining . c2007 : 261 - 272 .
ROBERT G , TANJA H , DOROTHEA W . Dynamic graph clusterin using minimum-cut trees [J ] . Journal of Graph Algorithms and Applications , 2012 , 16 ( 2 ): 411 - 446 .
DUAN D S , LI Y H , LI R X , et al . Incremental -clique clustering ink dynamic social networks [J ] . Artificial Intelligence , 2012 , 38 ( 2 ): 129 - 147 .
CHI Y , SONG X D , ZHOU D Y , et al . Evolutionary spectral clustering by incorporating temporal smoothness [C ] // The 13th ACM International Conference on Knowledge Discovery and Data Mining . c2007 : 153 - 162 .
LIN Y R , CHI Y , ZHU S H , et al . Analyzing communities nd their evolutions in dynamic social networks [J ] . ACM Transact ons on Knowledge Discovery from Data , 2009 , 3 ( 2 ): 8 : 1 - 8 : 31 .
THANG N D , NGUYEN N P , THAI M T . An adaptive approximation algorithm for community detection in dynamic scale-free networks [C ] // The 2013 IEEE INFOCOM . c2013 : 55 - 59 .
GORKE R , MAILLARD P , SCHUMM A , et al . Dynamic graph clustering combining modularity and smoothness [J ] . ACM Journal of Experimental Algorithmics , 2013 , 18 ( 1 ): 1.5 : 1.1 - 1.5 : 1.29 .
BECCHETTI L , BOLDI P , CASTILLLO C , et al . Efficient se istreaming algorithms for local triangle counting in massive graphs [C ] // The 14th ACM SIGKDD international conference on Knowledge discovery and data mining . c2008 : 16 - 24 .
KIM M S , HAN J W . A particle-and-density based evolutionary clustering method for dynamic networks [C ] // The 35th International Conference on Very Large Databases . c2009 : 622 - 633 .
TANG L , LIU H , ZHANG J P . Identifying evolving groups n dynamic multimode networks [J ] . IEEE Trans on Knowledge and Data Engineering , 2012 , 24 ( 1 ): 72 - 85 .
XU KS , KLIGER M , HERO A O . Adaptive evolutionary clustering [J ] . Data Mining and Knowledge Discover , 2014 , 28 ( 2 ): 304 - 336 .
MA H F , ZHAO W Z , SHI Z Z . A nonnegative matrix factorization framework for semi-supervised document clustering with dual constraints [J ] . Knowledge and Information Systems September , 2013 , 36 ( 3 ): 629 - 651 .
WASSERMAN S , FAUST K . Social network analysis: methods and applications [M ] . Cambridge University Press , 1994 .
PALLA G , DETRNYI I , FARKAS I , et al . Uncovering the overlapping community structure of complex networks in nature and iety [J ] . Nature , 2005 , 435 ( 1 ): 814 - 818 .
NEWMAN M . Spectral methods for network community detection and graph partitioning [J ] . Phys Rev E , 2013 , 88 ( 4 ): 042822 : 1 - 042822 : 11 .
AIROLDI E M , BLEI D M , FIENBERG S E , et al . Mixed membership stochastic block models [J ] . J Mach Learn Res , 2009 , 9 ( 1 ): 1981 - 2014 .
CHRISTOPHER M , MAES . A regularized active-set method roe sparse convex quadratic programming [M ] . 2010 Ph D Dissertation Stanford university .
WEBER M , RUNGSARITYOTIN W , SCHLIEP A . Perron cluster analysis and its connection to graph partitioning for isy data [M ] . Konrad-Zuse-Zentrum für Informationstechnik Berlin , 2004 .
LANCICHINETTI A , FORTUNATO S . Community detection algorithms: a comparative analysis [J ] . Phys Rev E 2009 2009 , 80 ( 5 ): 733 - 737 .
SUN J , FALOUTSOS C , PAPADIMITRIOU S , et al . Graphscope parameter-free mining of large time-evolving graphs [C ] // The 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . c2007 : 687 - 696 .
ArXiv dataset [EB/OL ] . http://www.cs.cornell.edu/projects/kddcup/datasets.html http://www.cs.cornell.edu/projects/kddcup/datasets.html . 2003 .
NGUYEN N P , DINH T N , XUAN Y , et al . Adaptive algorith for detecting community structure in dynamic social networks [C ] // The 2011 INFOCOM . c2011 : 2282 - 2290 .
VISWANATH B , MISLOVE A , CHA M , et al . On the evolution of user interaction in facebook [C ] // The 2nd ACM workshop on Online social networks . c2009 : 37 - 42 .
0
浏览量
1075
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构