浏览全部资源
扫码关注微信
1. 北京外国语大学计算机系,北京 100089
2. 清华大学计算机系,北京 100084
[ "陈福(1973),男,辽宁朝阳人,北京外国语大学副教授,主要研究方向为下一代互联网及其管理、跨语言网络空间信息采集与分析、进程代数。" ]
[ "林闯(1948-),男,辽宁沈阳人,清华大学教授、博士生导师,主要研究方向为计算机网络、系统性能评价、安全分析和随机Petri网。" ]
[ "薛超(1988),男,陕西渭南人,清华大学博士生,主要研究方向为网络体系结构的性能评价与优化、云计算虚拟资源调度等。" ]
[ "徐月梅(1985),女,广西梧州人,博士,北京外国语大学讲师,主要研究方向为数据中心网等。" ]
[ "孟坤(1980),男,河南洛阳人,清华大学助理研究员,主要研究方向为性能评价和随机模型。" ]
[ "倪艺函(1994),女,江苏连云港人,北京外国语大学博士生,主要研究方向为进程代数。" ]
网络出版日期:2016-02,
纸质出版日期:2016-02-15
移动端阅览
陈福, 林闯, 薛超, 等. 短句语义向量计算方法[J]. 通信学报, 2016,37(2):11-19.
Fu CHEN, Chuang LIN, Chao XUE, et al. Vector semantic computing method study for short sentence[J]. Journal on communications, 2016, 37(2): 11-19.
陈福, 林闯, 薛超, 等. 短句语义向量计算方法[J]. 通信学报, 2016,37(2):11-19. DOI: 10.11959/j.issn.1000-436x.2016018.
Fu CHEN, Chuang LIN, Chao XUE, et al. Vector semantic computing method study for short sentence[J]. Journal on communications, 2016, 37(2): 11-19. DOI: 10.11959/j.issn.1000-436x.2016018.
提出了一种基于人工神经网络的短文语义向量放缩算法,结合社交节点自身信息和短文语义,给出社交网络短文语义计算方法和突发话题发现算法。通过文本数值化实现语义距离的计算、比较、节点的分类及社区发现等。通过自行开发的微博采集工具Argus采集的大量新浪微博内容对所提模型和算法进行了验证,最后对未来工作进行了展望。
A vector semantic computing method study for short sentence based on artificial neural network was proposed. And a semantic computational algorithm for social network texts as well as a discovery algorithm for mergencies was provided with reference to the information provided by the social nodes itself and the semantic of the text. Through the numerization of text
the calculation and comparison of semantic distance
the classification of nodes and the discovery of community can be realized. Then
huge quantities of Sina Weibo contents are collected to verify the model and algorithm put forward. In the end
outlooks for future jobs are provided.
WASSERMAN S , FAUST K . Social network analysis: methods and applications [M ] . Cambridge, UK : Cambridge University Press , 1994 .
CHEN K H , HAN P P , WU J . User clustering based social network recommendation [J ] . Chinese Journal of Computers , 2013 , 36 ( 2 ): 349 - 359 .
徐嬴 , 刘屹 , 阴红志 等 . 查询性能预测方法的性能评测研究 [J ] . 计算机研究与发展 , 2013 , ( S1 ): 70 - 79 .
XU Y , LIU Y , YIN H Z , et al . An empirical study of the performance evaluation of query performance predictors [J ] . Journal of Computer Research and Development , 2013 , ( S1 ): 70 - 79 .
BLEI D M , NG A Y , JORDAN M I . Latent dirichlet allocation [J ] . Journal of Machine Learning Research , 2003 , 3 : 993 - 1022 .
STEYVERS M , GRIFFITHS T . Latent semantic analysis: a road to meaning [M ] . Laurence Erlbaum , 2007 .
MILSTEIN S , CHOWDHURY A , HOCHMUTH G , et al . Twitter and the micro-messaging revolution: communication, connections, and immediacy-140 characters at a time [R ] . O’Reilly Report , 2008 .
WENG J S , LIM E P , JIANG J , HE Q . Twitterrank: finding topic-sensitive influential twitterers [C ] // /The Third ACM International Conference on Web Search and Data Mining . c2010 : 261 - 270 .
WENG J S , LIM E P , JIANG J , et al . Finding topic-sensitive influential twitterers [C ] // The Third ACM International Conference on Web Search and Data mining . New York, USA , c2010 : 261 - 270 .
李劲 , 张华 , 吴浩雄 等 . 基于特定领域的中文微博热点话题挖掘系统 BTopicMiner [J ] . 计算机应用 , 2012 , 32 ( 8 ): 2346 - 2349 .
LI J , ZHANG H , WU H X , et al . BTopicminer: domain-specific topic mining system for Chinese microblog [J ] . Journal of Computer Applications , 2012 , 32 ( 8 ): 2346 - 2349 .
LAVRENKO V , ALLAN J , DEGUZMAN E , et al . Relevance models for topic detection and tracking [C ] // The Human Language Technology Conference . San Diego, USA , c2002 : 104 - 110 .
陈友 , 程学旗 , 杨森 . 面向网络论坛的突发话题发现 [J ] . 中文信息学报 , 2010 , 24 ( 3 ): 29 - 36 .
CHEN Y , CHENG X Q , YANG S . Outburst topic setection for Web forums [J ] . Journal of Chinese Information Processing , 2010 , 24 ( 3 ): 29 - 36 .
JON M . Kleinberg: bursty and hierarchical structure in streams [J ] . Data Mining and Knowledge Discovery , 2003 , 7 ( 4 ): 373 - 397 .
TOSHIMITSU T , RYOTA T , KENJI Y . Discovering emerging topics in social streams via link-anomaly detection [J ] . IEEE Trans Knowl. Data Eng , 2014 , 26 ( 1 ): 120 - 130 .
CARLOS J , MARTÍN D , AYSE G . Real-time topic detection with bursty N-grams [C ] // SNOW-DC@WWW 2014 . c2014 : 9 - 16 .
GEORGIOS P , SYMEON P , YIANNIS K . Two-level message clustering for topic detection in Twitter [C ] // SNOW-DC@WWW 2014 . c2014 : 49 - 56 .
ZHAO J J , WU W L , et al . A short-term prediction model of topic popularity on microblogs [C ] // The COCOON 2013 . c2013 : 759 - 769 .
DUAN Y , JIANG L , et al . An empirical study on learning to rank of tweets [C ] // The 23rd International Conference on Computational Linguistics . Beijing, China , c2010 : 295 - 303 .
HONG Y , ZHANG Y , LIU T , et al . Topic detection and tracking review [J ] . Journal of Chinese Information Processing , 2007 , 21 ( 6 ): 71 - 87 .
YANG L , LIN Y , LIN H . Micro-blog hot events detection based on emotion distribution [J ] . Journal of Chinese Information Processing , 2012 , 26 ( 1 ): 84 - 83 .
ZHANG J . Research of hot topic discovery strategy on micro logging platforms [D ] . Wuhan:Huazhong University of Science &Technology , 2010 .
YANG G C . Research of hot topic discovery strategy on micro logging platforms [D ] . Hangzhou:Zhejiang University , 2011 .
SUN J M , TANG J . A survey of models and algorithms for social influence analysis [M ] // Social Network Data Analytics , 2011 : 177 - 204 .
徐建民 , 张猛 , 吴树芳 . 基于话题的事件相似度计算 [J ] . 计算机工程与设计 , 2014 , 35 ( 4 ): 1193 - 1197 .
XU J M , ZHANG M , WU S F . Event similarity calculation based on topic [J ] . Computer Engineering and Design , 2014 , 35 ( 2 ): 1193 - 1197 .
RUMI G , KRISTINA L . Predicting influential users in online social network [C ] // The Fourth Social Network Analysis , c2010 .
SABIDUSSI G . The centrality index of a graph [J ] . Psychometrika , 1966 , 31 ( 4 ): 581 - 603 .
NEWMAN M E . A measure of betweenness centrality based random walks [J ] . Social Networks , 2005 , 27 ( 1 ): 39 - 54 .
DING Z Y , ZHOU B , JIA Y , et al . Topical influence analysis based on the multi-relational network in microblogs [J ] . Journal of Computer Research and Development , 2013 , 50 ( 10 ): 2155 - 2175 .
JOSEPH P , TURIAN L R , et al . Word representations: a simple and general method for semi-supervised learning [C ] // ACL . c2010 : 384 - 394 .
YOSHUA B , REJEAN D , PASCAL V , et al . A neural probabilistic language model [J ] . Journal of Machine Learning Research (JMLR) , 2003 , 3 : 1137 - 1155 .
MIKOLOV T , LE Q V , SUTSKEVER I . Distributed representations of sentences and documents [C ] // ICML . c2014 : 1188 - 1196 .
Available online [EB/OL ] . https://github.com/fxsjy/jieba https://github.com/fxsjy/jieba .
徐恪 , 张赛 , 陈昊 , 等 . 在线社会网络的测量与分析 [J ] . 计算机学报 , 2014 , 37 ( 1 ): 165 - 188 .
XU K , ZHANG S , CHEN H , et al . Measurement and analysis of online social networks [J ] . Chinese Journal of Computers , 2014 , 37 ( 1 ): 165 - 188 .
0
浏览量
1278
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构