浏览全部资源
扫码关注微信
福州大学物理与信息工程学院,福建 福州 350116
[ "陈建(1981-),女,福建福州人,福州大学讲师,主要研究方向为视频编解码、压缩感知。" ]
[ "苏凯雄(1959-),男,福建罗源人,福州大学教授、博士生导师,主要研究方向为多媒体通信、数字电视广播。" ]
[ "杨秀芝(1963-),女,山西灵石人,福州大学教授、硕士生导师,主要研究方向为图像处理、数字电视技术。" ]
[ "郑明魁(1976-),男,福建闽侯人,福州大学副教授,主要研究方向为多媒体视频编码。" ]
[ "林丽群(1980-),女,福建莆田人,福州大学讲师、博士生,主要研究方向为图像处理。" ]
网络出版日期:2016-01,
纸质出版日期:2016-01-25
移动端阅览
陈建, 苏凯雄, 杨秀芝, 等. 基于变分模型的块压缩感知重构算法[J]. 通信学报, 2016,37(1):100-109.
Jian CHEN, xiong SUKai, zhi YANGXiu, et al. Reconstruction algorithm for block compressed sensing based on variation model[J]. Journal on communications, 2016, 37(1): 100-109.
陈建, 苏凯雄, 杨秀芝, 等. 基于变分模型的块压缩感知重构算法[J]. 通信学报, 2016,37(1):100-109. DOI: 10.11959/j.issn.1000-436x.2016011.
Jian CHEN, xiong SUKai, zhi YANGXiu, et al. Reconstruction algorithm for block compressed sensing based on variation model[J]. Journal on communications, 2016, 37(1): 100-109. DOI: 10.11959/j.issn.1000-436x.2016011.
为了提高现有块压缩感知重构算法的性能,提出了基于全变分和混合变分模型的块压缩感知(简称BCS-TV和BCS-MV)算法。该方法以块为单位进行图像采样,以自然图像正则项的稀疏性为先验条件,通过变型的增广拉格朗日交替方向乘子法(ALM-ADMM),在整幅图像范围内逼近目标函数来重构原始图像。与以前基于一致性块采样的压缩感知工作对比,该算法的PSNR约提高1.5 dB
SSIM约提高0.05,运行速度较稳定,特别适合具有固定传输时延的多媒体数据处理场合。
The algorithms for block compressed sensing based on total variation and mixed variation (abbreviated as BCS-TV and BCS-MV) models were proposed to improve the performance of current reconstruction algorithms for the block-based compressed sensing. In the measuring phase
an image was sampled block-by-block. In the recovering period
it took the sparse regularization of the natural image as a priori knowledge
and approached the target function within the whole image through the modified augmented Lagrange method and alternating direction method of multipliers (ALM-ADMM). The method proposed achieves average PSNR gain of 1.5 dB and SSIM gain of 0.05 at a more stable running speed
over the previous uniformly block-based compressed sensing. It is particularly suitable for the applications of the multimedia data processing with fixed transmission delay.
CANDES E , ROMBERG J , TAO T . Robust uncertainty princip es:exact signal reconstruction from highly incomplete frequency infor-mation [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 2 ): 489 - 509 .
DONOHO D . Compressed sensing [J ] . IEEE Transactions on Informa-tion Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
ELDAR Y C , KUTYNIOK G . Compressed Sensing: Theory and Ap-plications [M ] . USA : Cambridge University Press , 2012
LU G . Block compressed sensing of natural images [C ] // The 15th International Conference on Digital Signal Processing . Cardiff , c 2007 : 403 - 406 .
THONG T D , TRAC D T , LU G . Fast compressive sampling with structurally random matrices [C ] // The 2008 IEEE International Confe-rence on Acoustics, Speech and Signal Processing (ICASSP). Las Ve-gas, USA , c 2008 : 3369 - 3372 .
MUN S , FOWLER J . E.Block compressed sensing of images using directional transforms [C ] // Data Compression Conference (DCC). Snowbird, Utah , c 2010 : 547 .
FOWLER J E , MUN S , TRAMEL E W . Block-based compressed sensing of images and video [J ] . Foundations and Trends in Signal Processing , 2012 ( 4 ): 297 - 416 .
THONG T D , LU G , NAM H N , et al . Fast and efficient compressive sensing using structurally random matrices [J ] . IEEE Transactions on Signal Processing , 2012 , 60 ( 1 ): 139 - 154 .
ARMIN E , HAN L Y , CHRISTOPHER J R , et al . The restricted iso-metry property for random block diagonal matrices [J ] . Applied and Computational Harmonic Analysis , 2015 , 38 ( 1 ): 1 - 31 .
VAN T C , DINH K Q , JEON B . Edge-preserving block compressive sensing with projected landweber [C ] // The 20th International Confe-rence on Systems, Signals and Image Processing (IWSSIP). Bucharest, Romania , c 2013 : 71 - 74 .
FOUCART S , RAUHUT H . A Mathematical Introduction To Com-pressive Sensing [M ] . Springer New York Press , USA . 2013 .
LI C B . An Effcient Algorithm For Total Variation Regularization With Applications To The Single Pixel Camera And Compressive Sens-ing [D ] . Rice University , 2009 .
LI C B . Compressive Sensing For 3d Data Processing Tasks: Applica-tions, Models And Algorithms [D ] . Rice University , 2011 .
HE B S , TAO M , YUAN X M . A splitting method for separable con-vex programming [J ] . IMA Journal of Numerical Analysis , 2014 ,( 1 ): 1 - 33 .
HE B S , LIAO L Z , WANG X . Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods [J ] . Computation Optimization Ap-plication , 2012 ,( 51 ): 649 - 679 .
HE B S , LIAO L Z , WANG X . Proximal-like contraction methods for monotone variational inequalities in a unified framework II: General methods and numerical experiments [J ] . Computation Optimization Application , 2012 ,( 51 ): 681 - 708 .
GU G Y , HE B S , YUAN X M . Customized proximal point a go-rithms for linearly constrained convex minimization a sad-dle-point problems: a unified approach [J ] . Computation Optimization Application , 2014 ,( 59 ): 135 - 161 .
0
浏览量
1176
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构