浏览全部资源
扫码关注微信
1. 苏州大学 计算机科学与技术学院,江苏 苏州 215006
2. 江苏省软件新技术与产业化协同创新中心,江苏 南京 211102
3. 复旦大学 计算机科学技术学院 上海市数据科学重点实验室,上海 201203
4. 山东大学 计算机科学与技术学院,山东 济南 250101
[ "许佳捷(1983-),男,北京人,博士,苏州大学副教授、硕士生导师,主要研究方向为大数据管理、时空数据库、海量数据存储、分布式计算、工作流系统。" ]
[ "郑凯(1983-),男,山东淄博人,博士,苏州大学特聘教授、博士生导师,主要研究方向为大数据管理、社交媒体数据分析、时空数据库、不确定数据库、内存数据库、数据挖掘等。" ]
[ "池明旻(1977-),女,福建三明人,博士,复旦大学副教授、硕士生导师,主要研究方向为数据科学、大数据、机器学习。" ]
[ "朱扬勇(1963-),男,浙江金华人,博士,复旦大学教授、博士生导师,主要研究方向为数据科学、大数据、数据挖掘。" ]
[ "禹晓辉(1977-),男,山东德州人,博士,山东大学教授、博士生导师,主要研究方向为大数据管理与分析,包括分布式流数据管理、时空数据挖掘、社会媒体数据分析等。" ]
[ "周晓方(1963-),男,江苏无锡人,博士,苏州大学特聘教授,主要研究方向为空间数据库、多媒体数据库、数据质量、高性能数据处理及网络信息系统,以及这些技术在生物信息学、地理信息系统、移动对象管理、水文信息系统、医疗卫生系统、Web查询及视频数据检索等方面的应用。" ]
网络出版日期:2015-12,
纸质出版日期:2015-12-25
移动端阅览
许佳捷, 郑凯, 池明旻, 等. 轨迹大数据:数据、应用与技术现状[J]. 通信学报, 2015,36(12):97-105.
Jia-jie XU, Kai ZHENG, Ming-min CHI, et al. Trajectory big data:data,applications and techniques[J]. Journal on communications, 2015, 36(12): 97-105.
许佳捷, 郑凯, 池明旻, 等. 轨迹大数据:数据、应用与技术现状[J]. 通信学报, 2015,36(12):97-105. DOI: 10.11959/j.issn.1000-436x.2015318.
Jia-jie XU, Kai ZHENG, Ming-min CHI, et al. Trajectory big data:data,applications and techniques[J]. Journal on communications, 2015, 36(12): 97-105. DOI: 10.11959/j.issn.1000-436x.2015318.
移动互联技术的飞速发展催生了大量的移动对象轨迹数据。这些数据刻画了个体和群体的时空动态性,蕴含着人类、车辆、动物的行为信息,对交通导航、城市规划、车辆监控等应用具有重要的价值。为了实现有效的轨迹数据价值提取,近年来学术界和工业界针对轨迹管理问题开展了大量研究工作,包括轨迹数据预处理,以解决数据冗余高、精度差、不一致等问题;轨迹数据库技术,以支持有效的数据组织和高效的查询处理;轨迹数据仓库,支持大规模轨迹的统计、理解和分析;最后是知识提取,从数据中挖掘有价值的模式与规律。因此,综述轨迹大数据分析,从企业数据、企业应用、前沿技术这3个角度揭示该领域的现状。
The fast development of mobile internet has given rise to an extremely large volume of moving objects trajectory data.These data not only reflect the spatio-temporal mobility of individuals and groups
but may also contain the behavior information of people
vehicles animals
and other objects of interest.They are invaluable for route planning
urban planning and vehicle monitoring
etc.
and tremendous efforts have been made to support effective trajectory data management
including trajectory data pre-processing
which handles issues such as high redundancy
low precision and inconsistency of sampling; trajectory database technologies
concerning the efficient and effective storage of trajectory data and query processing; trajectory data warehousing
which supports the analytics on large-scale trajectory data;knowledge discovery
by which useful patterns can be extracted from trajectory data.A survey of trajectory big data analytics from three different aspects:data
applications and techniques is provided.
SCHUESSLER N , AXHAUSEN K . Processing raw data from global positioning systems without additional information [J ] . Transportation Research Record:Journal of the Transportation Research Board , 2009 ( 2105 ): 28 - 36 .
DOUGLAS D H , PEUCKER T K . Algorithms for the reduction of the number of points required to represent a digitized line or its caricature [J ] . Cartographica:The International Journal for Geographic Information and Geovisualization , 1973 , 10 ( 2 ): 112 - 122 .
MERATNIA N , ROLF A . Spatiotemporal compression techniques for moving point objects [A ] . Advances in Database Technology-EDBT [C ] . 2004 . 765 - 782 .
ZHENG Y , et al . Mining interesting locations and travel sequences from GPS trajectories [A ] . Proceedings of the 18th International Conference on World Wide Web [C ] . 2009 .
PALMA A T , et al . A clustering-based approach for discovering interesting places in trajectories [A ] . Proceedings of the 2008 ACM Symposium on Applied Computing [C ] . 2008 .
GREENFELD J S . Matching GPS observations to locations on a digital map [A ] . Transportation Research Board 81st Annual Meeting [C ] . 2002 .
BRAKATSOULAS S , et al . On map-matching vehicle tracking data [A ] . Proceedings of the 31st International Conference on Very Large Data Bases [C ] . 2005 .
NEWSON P , KRUMM J . Hidden Markov map matching through noise and sparseness [A ] . Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems [C ] . 2009 .
LIU K , et al . Effective map-matching on the most simplified road network [A ] . Proceedings of the 20th International Conference on Advances in Geographic Information Systems [C ] . 2012 ACM.
LI S , et al . Quick geo-fencing using trajectory partitioning and boundary simplification [A ] . Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems [C ] . 2013 .
TANG Y , ZHU A D , XIAO X . An efficient algorithm for mapping vehicle trajectories onto road networks [A ] . Proceedings of the 20th International Conference on Advances in Geographic Information Systems [C ] . 2012 .
ZHENG K , et al . Reducing uncertainty of low-sampling-rate trajectories [A ] . Data Engineering (ICDE),2012 IEEE 28th International Conference on [C ] . 2012 .
SU H , et al . Calibrating trajectory data for similarity-based analysis [A ] . Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data [C ] . 2013 .
SU H , et al . Calibrating trajectory data for spatio-temporal similarity analysis [J ] . The VLDB Journal , 2015 , 24 ( 1 ): 93 - 116 .
SISTLA A P , et al . Modeling and querying moving objects [A ] . ICDE [C ] . 1997 .
GÜTING R H , et al . A foundation for representing and querying moving objects [J ] . ACM Transactions on Database Systems (TODS) , 2000 , 25 ( 1 ): 1 - 42 .
WANG H , et al . SharkDB:An in-memory column-oriented trajectory storage [A ] . Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management [C ] . 2014 .
KELLARIS PELEKIS G N , THEODORIDIS Y . Trajectory compression under network constraints [A ] . Advances in Spatial and Temporal Databases [C ] . 2009 . 392 - 398 .
SONG R , et al . PRESS:A novel framework of trajectory compression in road networks [J ] . Proceedings of the VLDB Endowment , 2014 , 7 ( 9 ): 661 - 672 .
CHAN W S , CHIN F . Approximation of polygonal curves with minimum number of line segments or minimum error [J ] . International Journal of Computational Geometry & Applications , 1996 , 6 ( 1 ): 59 - 77 .
GUTTMAN A . R-trees:a dynamic index structure for spatial searching [A ] . SIGMOD [C ] . 1984 . 47 - 57 .
PFOSER D , JENSEN C S , THEODORIDIS Y . Novel approaches to the indexing of moving object trajectories [A ] . Proceedings of VLDB [C ] . 2000 .
NASCIMENTO M A , SILVA J R . Towards historical R-trees [A ] . Proceedings of the 1998 ACM Symposium on Applied Computing [C ] . 1998 .
YUFEI T , PAPADIAS D . MV3R-tree:a spatio-temporal access method for timestamp and interval queries [A ] . VLDB [C ] . 2001 . 431 - 440 .
CHAKKA V P , EVERSPAUGH A C , PATEL J M . Indexing large trajectory data sets with SETI [A ] . CIDR [C ] . 2003 .
丁治明 . 一种适合于频繁位置更新的网络受限移动对象轨迹索引 [J ] . 计算机学报 , 2012 , 35 ( 7 ): 1448 - 1461 .
DING Z M . An index structure for frequently updated network-constrainted moving object trajectories [J ] . Chinese Journal of Computers , 2012 , 35 ( 7 ): 1448 - 1461 .
VLACHOS M , KOLLIOS G , GUNOPULOS D . Discovering similar multidimensional trajectories [A ] . Data Engineering,2002 Proceedings 18th International Conference on [C ] . 2002 .
CHEN L , NG R . On the marriage of lp-norms and edit distance [A ] . Proceedings of the Thirtieth International Conference on Very Large Data Bases-Volume [C ] . 2004 .
CHEN L , ÖZSU M T , ORIA V . Robust and fast similarity search for moving object trajectories [A ] . Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data [C ] . 2005 .ACM.
CHEN Z , et al . Searching trajectories by locations:an efficiency study [A ] . Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data [C ] . 2010 .
ZHENG Y , et al . Learning transportation mode from raw gps data for geographic applications on the web [A ] . Proceedings of the 17th International Conference on World Wide Web [C ] . 2008 .
YAN Z , et al . Semantic trajectories:Mobility data computation and annotation [J ] . ACM Transactions on Intelligent Systems and Technology (TIST) , 2013 , 4 ( 3 ): 49 .
ALVARES L O , et al . A model for enriching trajectories with semantic geographical information [A ] . Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems [C ] . 2007 .
ZHENG K , et al . Towards efficient search for activity trajectories [A ] . Data Engineering (ICDE),2013 IEEE 29th International Conference [C ] . 2013 .
LIN B , SU J . One way distance:For shape based similarity search of moving object trajectories [J ] . Geoinformatica , 2008 , 12 ( 2 ): 117 - 142 .
ZHENG B , et al . Approximate keyword search in semantic trajectory database [A ] . Data Engineering (ICDE),2015 IEEE 31st International Conference [C ] . 2015 .
MA C , et al . KSQ:Top-k similarity query on uncertain trajectories [J ] . Knowledge and Data Engineering,IEEE Transactions , 2013 , 25 ( 9 ): 2049 - 2062 .
ZHENG Y . Trajectory data mining:an overview [J ] . ACM Transactions on Intelligent Systems and Technology (TIST) , 2015 , 6 ( 3 ): 29 .
GIANNOTTI F , et al . Trajectory pattern mining [A ] . Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [C ] . 2007 .
WANG Y , ZHENG Y , XUE Y . Travel time estimation of a path using sparse trajectories [A ] . Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [C ] . 2014 .
CHEN Z , SHEN H T , ZHOU X . Discovering popular routes from trajectories [A ] . Data Engineering (ICDE),2011 IEEE 27th International Conference [C ] . 2011 .
LEE J G , HAN J , LI X . Trajectory outlier detection:A partition-and-detect framework [A ] . Data Engineering,ICDE 2008 IEEE 24th International Conference [C ] . 2008 .
KRUMM J , HORVITZ E . Predestination:Inferring destinations from partial trajectories [A ] . UbiComp 2006:Ubiquitous Computing [C ] . 2006 . 243 - 260 .
LIAO L , et al . Learning and inferring transportation routines [J ] . Artificial Intelligence , 2007 , 171 ( 5 ): 311 - 331 .
CAO H , MAMOULIS N , CHEUNG D W . Discovery of periodic patterns in spatiotemporal sequences [J ] . Knowledge and Data Engineering,IEEE Transactions on , 2007 , 19 ( 4 ): 453 - 467 .
GUDMUNDSSON J , KREVELD M V . Computing longest duration flocks in trajectory data [A ] . Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems [C ] . 2006 .ACM.
JEUNG H , et al . Discovery of convoys in trajectory databases [J ] . Proceedings of the VLDB Endowment , 2008 , 1 ( 1 ): 1068 - 1080 .
LI Z , et al . Swarm:Mining relaxed temporal moving object clusters [J ] . Proceedings of the VLDB Endowment , 2010 , 3 ( 1-2 ): 723 - 734 .
ZHENG K , ZHENG Y , et al . On discovery of gathering patterns from trajectories [A ] . ICDE [C ] . 2013 . 242 - 253
ZHENG K , ZHENG Y , et al . Online discovery of gathering patterns over trajectories [J ] . IEEE Trans Knowl Data Eng , 2004 26 ( 8 ): 1974 - 1988 .
TANG L A , et al . On discovery of traveling companions from streaming trajectories [A ] . Data Engineering (ICDE),IEEE 28th International Conference [C ] . 2012 .
LEE J G , HAN J , WHANG K Y . Trajectory clustering:a partition-and-group framework [A ] . Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data [C ] . 2007 .
LI Z , et al . Incremental clustering for trajectories [A ] . Database Systems for Advanced Applications [C ] . 2010 .
CAO X , CONG G , JENSEN C S . Mining significant semantic locations from GPS data [J ] . Proceedings of the VLDB Endowment , 2010 , 3 ( 1 - 2 ): 1009 - 1020 .
YUAN J , et al . T-drive:driving directions based on taxi trajectories [A ] . Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems [C ] . 2010 .
SU H , et al . Making sense of trajectory data:a partition-and- summarization approach [A ] . Data Engineering (ICDE),IEEE 31st International Conference [C ] . 2015 .
0
浏览量
5918
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构