浏览全部资源
扫码关注微信
哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080
[ "苏洁(1979 -),女,山东淄博人,哈尔滨理工大学副教授、硕士生导师,主要研究方向为智能信息处理。" ]
[ "董伟伟[通信作者](1986-),男,江苏盐城人,哈尔滨理工大学硕士生,主要研究方向为入侵检测与网络安全。E-mail:cdefghijklmn@163.com。" ]
[ "许璇(1989-),女,山东单县人,哈尔滨理工大学硕士生,主要研究方向为图像识别。" ]
[ "刘帅(1988-),男,山东济宁人,哈尔滨理工大学硕士生,主要研究方向为信息技术。" ]
[ "谢立鹏(1992-),男,广西柳州人,哈尔滨理工大学本科生,主要研究方向为网络安全。" ]
网络出版日期:2015-11,
纸质出版日期:2015-11-25
移动端阅览
苏洁, 董伟伟, 许璇, 等. 基于Dempster-Shafer理论的GHSOM入侵检测方法[J]. 通信学报, 2015,36(Z1):60-64.
Jie SU, Wei-wei DONG, Xuan XU, et al. GHSOM intrusion detection based on Dempster-Shafer theory[J]. Journal on communications, 2015, 36(Z1): 60-64.
苏洁, 董伟伟, 许璇, 等. 基于Dempster-Shafer理论的GHSOM入侵检测方法[J]. 通信学报, 2015,36(Z1):60-64. DOI: 10.11959/j.issn.1000-436x.2015282.
Jie SU, Wei-wei DONG, Xuan XU, et al. GHSOM intrusion detection based on Dempster-Shafer theory[J]. Journal on communications, 2015, 36(Z1): 60-64. DOI: 10.11959/j.issn.1000-436x.2015282.
结合证据推理DS理论,提出了基于Dempster-Shafer理论的GHSOM神经网络入侵检测方法,一方面处理数据不确定性中的随机性和模糊性问题,可以在噪音环境下保持良好的检测率,此外通过证据融合理论缩小数据集,有效控制网络的动态增长。实验结果表明,基于 Dempster-Shafer 理论的 GHSOM 入侵检测方法实现了对子网拓展规模在检测中的动态控制,提升了在网络规模不断扩展时的动态适应性,在噪音环境下具有良好的检测准确率,提升了GHSOM入侵检测方法的扩展性。
On the basis of incremental GHSOM
the GHSOM neural network intrusion detection based on the theory of evidence reasoning method was put forward.It can deal with the uncertainty caused by randomness and fuzziness
as well as can constantly narrowing assumptions set by accumulate the evidence
effectively control dynamic growth of network and keep a good accuracy in noise environment.Experiments show that GHSOM intrusion detection method based on the Dempster Shafer theory realized the dynamic control for the scale of expended subnet during the process of detection.It has the better detection accuracy in the noise environment and improves the adaptability and extensibility of incremental GHSOM neural network intrusion detection method when the scale of network is expanded.
LUO Z Y , YOU B , XU J Z , et al . Attack graph algorithm in the application of intrusion detection system [J ] . International Journal of Security and its Applications , 2013 ,( 9 ): 249 - 256 .
LUO Z Y , YOU B , YU G H , et al . Research of intrusive intention self-recognition algorithm based on three-tier attack graph [J ] . ICIC Express Letters,Part B:Applications , 2015 ,( 1 ): 1575 - 1580 .
阳时来 , 杨雅辉 , 沈晴霓 , 等 . 一种基于半监督GHSOM的入侵检测方法 [J ] . 计算机研究与发展 , 2013 , 50 ( 11 ): 2375 - 2382 .
YANG S L , YANG Y H , SHEN Q N , et al . A method of intrusion detection based on semi-supervised GHSOM [J ] . Journal of Computer Research and Development , 2013 , 50 ( 11 ): 2375 - 2382 .
杨雅辉 , 姜电波 , 沈晴霓 , 等 . 基于改进的GHSOM的入侵检测研究 [J ] . 通信学报 , 2011 , 32 ( 1 ): 121 - 126 .
YANG Y H , JIANG D B , SHEN Q N , et al . Research on intrusion detection based on an improved GHSOM [J ] . Journal on Communications , 2011 , 32 ( 1 ): 121 - 126 .
ZELL A , BAYER H , BAUKNECHT H . Similarity analysis of molecules with self-organizing surfaces—an extension of the self- organizing map [A ] . Proceedings of the International Conference on Neural Networks [C ] . 1994 . 719 - 724 .
DENG D , KASABOV N . ESOM:an algorithm to evolve selforganizing maps from on-line data streams [A ] . Proceedings of the International Joint Conference on Neural Networks [C ] . 2000 . 38 .
杨雅辉 , 黄海珍 , 沈晴霓 , 等 . 基于增量式 GHSOM 神经网络模型的入侵检测研究 [J ] . 计算机学报 , 2014 , 37 ( 5 ): 1216 - 1224 .
YANG Y H , HUANG H Z , SHEN Q N , et al . Research on intrusion detection based on incremental GHSOM [J ] . Chinese Journal of Computers , 2014 , 37 ( 5 ): 1216 - 1224 .
李玲玲 , 马东娟 , 王成山 , 等 . DS 证据理论冲突处理新方法 [J ] . 计算机应用研究 , 2011 , 28 ( 12 ): 4528 - 4531 .
LI L L , MA D J , WANG C S , et al . New method for conflict evidence processing in DS theory [J ] . Application Research of Computers , 2011 , 28 ( 12 ): 4528 - 4531 .
邱望仁 , 刘晓东 . 基于证据理论的模糊时间序列预测模型 [J ] . 控制与决策 , 2012 , 27 ( 1 ): 99 - 103 .
QIU W R , LIU X D . Fuzzy time series model for forecasting based on Dempster-Shafer theory [J ] . Control and Decision , 2012 , 27 ( 1 ): 99 - 103 .
杜元伟 , 石方园 , 杨娜 . 基于证据理论/层次分析法的贝叶斯网络建模方法 [J ] . 计算机应用 , 2015 , 35 ( 1 ): 140 - 146,151 .
DU Y W , SHI F Y , YANG N . Construction method for Bayesian network based on Dempster-Shafer/analytic hierarchy process [J ] . Journal of Computer Applications , 2015 , 35 ( 1 ): 140 - 146,151 .
0
浏览量
905
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构