浏览全部资源
扫码关注微信
1. 南开大学 计算机与控制工程学院,天津 300071
2. 北京航空航天大学 电子信息工程学院,北京 100191
[ "刘国栋(1966-),男,山东乐陵人,南开大学博士生,主要研究方向为软件工程、模式识别。" ]
[ "许静(1967-),女,天津人,博士,南开大学教授、博士生导师,主要研究方向为大数据分析、软件安全、软件测试等。" ]
[ "张国兵(1979-),男,河北邢台人,硕士,主要研究方向为自动化测试、智能识别。" ]
网络出版日期:2015-10,
纸质出版日期:2015-10-25
移动端阅览
刘国栋, 许静, 张国兵. 基于隐含信息的半监督学习方法研究[J]. 通信学报, 2015,36(10):133-139.
Guo-dong LIU, Jing XU, Guo-bing ZHANG. Study of implicit information semi-supervised learning algorithm[J]. Journal on communications, 2015, 36(10): 133-139.
刘国栋, 许静, 张国兵. 基于隐含信息的半监督学习方法研究[J]. 通信学报, 2015,36(10):133-139. DOI: 10.11959/j.issn.1000-436x.2015263.
Guo-dong LIU, Jing XU, Guo-bing ZHANG. Study of implicit information semi-supervised learning algorithm[J]. Journal on communications, 2015, 36(10): 133-139. DOI: 10.11959/j.issn.1000-436x.2015263.
研究了基于隐含信息的半监督学习方法,并将该方法应用于支持向量机和随机森林模型。利用UCI数据库中的数据验证了基于此方法的支持向量机和随机森林的精度。在此基础上,将此种方法应用于肺音识别领域,利用实际的肺音数据对此方法处理实际问题的效果进行了验证,同时实验分析了无标记样本的数量以及质量对此方法的影响。
Implicit information semi supervised learning algorithm was studied.The implicit information semi supervised learning algorithm was used in support vector machine and random forest
which were called semi-SVM and semi-RF.The semi-SVM and semi-RF were evaluated by using UCI
the experimental results show that the semi-SVM and semi-RF are more effective and more precise.The semi-SVM and semi-RF were applied to classifying lung sounds
and verified the effect by using the actual lung sounds data.the quantity and quality of samples affect semi-SVM and semi-RF were analyzed.
YANG L X , YANG S Y . Semi-supervised hyperspectral image classification using spatio-spectral laplacian support vector machine [J ] . IEEE Geoscience and Remote Sensing Letters , 2014 , 11 ( 3 ): 651 - 656 .
LIU L C , HSAIO W H , LEE C H , et al . Semi-supervised text classification with universum learning [J ] . IEEE Transactions on Cybernetics,DOI:10.1109/TCYB.2015.2403573 , 2015 .
ONOFREY J A . Low-dimensional non-rigid image registration using statistical deformation models from semi-supervised training data [J ] . IEEE Transactions on Medical Imaging,DOI:10.1109/ TMI.2015.2404572 , 2015 .
ZHOU Z H . Co-training paradigm in semi-supervised learning [A ] . Proceeding of the Chinese Workshop on Machine Learning and Applications [C ] . Nanjing,China , 2007 . 261 - 267 .
ZHOU D Y , BOUSQUET O , LAL T N , et al . Learning with local and global consistency [J ] . Advances in Neural Information Processing System , 2004 , 3 ( 21 ): 23 - 28 .
WU C M , WANG X D , BAI D Y . Fast incremental learning algorithm of SVM on KKT conditions [A ] . 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery [C ] . 2009 . 551 - 554 .
JAKKOLA T , HAUSSLER D . Exploiting generative models in discriminative classifiers [A ] . Advances in Neural Information Processing Systems [C ] . Cambridge,MA : The MIT Press , 1999 . 487 - 493 .
FRALICK S C . Learning to recognize patterns without a teacher [J ] . IEEE Transactions on Information Theory , 1967 , 13 ( 1 ): 57 - 64 .
AGRAWALA A K . Learning with a probabilistic teacher [J ] . IEEE Transactions on Information Theory , 1970 , 16 ( 4 ): 373 - 379 .
HOLUB A , WELLING M , PERONA P . Exploiting unlabeled data for hybrid object classification [A ] . Proc of the 17th Annual Conference on Neural Information Processing Systems [C ] . 2005 . 165 - 171 .
WANG W , ZHOU Z H . Analyzing co-training style algorithms [A ] . Proc of the 18th Conference on Machine Learning [C ] . 2007 . 454 - 465 .
KUBAT M , HOLTE B C , MATWIN S . Machine learning for the detection of oil spills in satellite radar images [J ] . Machine Learning , 1998 , 30 ( 2 ): 195 - 215 .
JOACHIMS T . Transductive inference for text classification using support vect ormachines [A ] . Machine Learning-international Workshop Then Conference [C ] . Morgan Kaufmann Publishers,INC , 1999 . 200 - 209 .
BLUM A , LAFFERTY J , RWEBANGIRA M R , et al . Semi- supervised learning using randomized mincuts [A ] . Proceedings of the Twenty-first International Conference on Machine Learning [C ] . ACM , 2004 .13.
ZHU X Q . Cross-domain semi-supervised learning using feature formulation [J ] . IEEE Transactions on Systems MAN,and CybernerticsPart B:Cybernetics , 2011 , 41 ( 6 ): 1627 - 1638 .
0
浏览量
704
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构