浏览全部资源
扫码关注微信
1. 空军工程大学 防空反导学院,陕西 西安 710051
2. 中国人民解放军 94936部队,浙江 杭州 310021
[ "余晓东(1989-),男,江西九江人,空军工程大学博士生,主要研究方向为模式识别、智能信息处理等。" ]
[ "雷英杰(1956-),男,陕西渭南人,空军工程大学教授、博士生导师,主要研究方向为智能信息处理与智能决策。" ]
[ "宋亚飞(1988-),男,河南汝州人,博士,空军工程大学讲师,主要研究方向为信息融合、证据推理等。" ]
[ "岳韶华(1968-),女,湖北黄梅人,空军工程大学高级实验师、硕士生导师,主要研究方向为智能信息处理与智能决策。" ]
[ "胡军红(1978-),女,山东莱芜人,博士,94936部队工程师,主要研究方向为智能信息处理。" ]
网络出版日期:2015-10,
纸质出版日期:2015-10-25
移动端阅览
余晓东, 雷英杰, 宋亚飞, 等. 基于直觉模糊核匹配追踪集成的目标识别方法[J]. 通信学报, 2015,36(10):165-171.
Xiao-dong YU, Ying-jie LEI, Ya-fei SONG, et al. Intuitionistic fuzzy kernel matching pursuit ensemble based target recognition[J]. Journal on communications, 2015, 36(10): 165-171.
余晓东, 雷英杰, 宋亚飞, 等. 基于直觉模糊核匹配追踪集成的目标识别方法[J]. 通信学报, 2015,36(10):165-171. DOI: 10.11959/j.issn.1000-436x.2015260.
Xiao-dong YU, Ying-jie LEI, Ya-fei SONG, et al. Intuitionistic fuzzy kernel matching pursuit ensemble based target recognition[J]. Journal on communications, 2015, 36(10): 165-171. DOI: 10.11959/j.issn.1000-436x.2015260.
针对现有直觉模糊核匹配追踪算法采用部分样本进行训练和停机策略而导致学习机泛化能力下降的缺陷,结合集成学习的思想,提出了一种基于直觉模糊核匹配追踪集成的目标识别方法。该算法通过采用样本扰动和参数扰动的二重扰动策略产生子学习机,并利用多数投票法对其识别结果进行融合,从而提高了集成学习机的分类精度和泛化性能。实验结果表明,与传统方法相比,该方法可获得更优的识别效果,有效提高了识别精度,并能避免采样学习带来的不稳定性。
Considering that the generalization of the learning machine performed poorly in the present intuitionistic fuzzy kernel matching pursuit algorithm(IFKMP)due to its training method and stopping criteria
a new recognition method based on intuitionistic fuzzy kernel matching pursuit ensemble(IFKMPE)was proposed by introducing the idea of ensemble learning.In IFKMPE
the double perturbation strategy including sample and parameter perturbation was applied to generate the sub-learning machine
the recognition results were fused by the principle of majority voting
and therefore both the classify accuracy and generation ability were enhanced.Simulation results show the new algorithm IFKMPE performs better in terms of recognition accuracy and stability of sample learning compared with the traditional ones.
PASCAL V , BENGIO Y . Kernel matching pursuit [J ] . Machine Learning , 2002 , 48 ( 1 - 3 ): 165 - 187 .
CEVHERV , KRAUSE A . Greedy dictionary selection for sparse representation [J ] . IEEE Journal of Selected Topics Signal Processing , 2011 , 5 ( 5 ): 979 - 988 .
SUN P , YAO X . Sparse approximation through boosting for learning large scale kernel machines [J ] . IEEE Transaction on Neural Networks , 2010 , 21 ( 6 ): 883 - 894 .
付丽华 , 李宏伟 , 张猛 . 基于更贪心策略的快速正交核匹配追踪算法 [J ] . 电子学报 , 2013 , 41 ( 8 ): 1580 - 1585 .
FU L H , LI H W , ZHANG M . Fast orthogonal kernel matching pursuit based on greedier strategy [J ] . Acta Electronica Sinica , 2013 , 41 ( 8 ): 1580 - 1585 .
雷阳 , 孔韦韦 , 雷英杰 . 基于直觉模糊 c 均值聚类核匹配追踪的弹道中段目标识别方法 [J ] . 通信学报 , 2012 , 33 ( 11 ): 136 - 143 .
LEI Y , KONG W W , LEI Y J . Technique for target recognition based on intuitionistic fuzzy c-means clustering and kernel matching pursuit [J ] . Journal on Communications , 2012 , 33 ( 11 ): 136 - 143 .
李青 , 焦李成 , 周伟达 . 基于模糊核匹配追寻的特征模式识别 [J ] . 计算机学报 , 2009 , 32 ( 8 ): 1687 - 1694 .
LI Q , JIAO L C , ZHOU W D . Pattern recognition based on the fuzzy kernel matching pursuit [J ] . Chinese Journal of Computers , 2009 , 32 ( 8 ): 1687 - 1694 .
雷阳 , 雷英杰 , 周创明 . 基于直觉模糊核匹配追踪的目标识别方法 [J ] . 电子学报 , 2011 , 39 ( 6 ): 1441 - 1446 .
LEI Y , LEI Y J , ZHOU C M . Techniques for target recognition based on intuitionistic fuzzy kernel matching pursuit [J ] . Acta Electronica Sinica , 2011 , 39 ( 6 ): 1441 - 1446 .
HANSEN L K , SALAMON P . Neural network ensemble [J ] . IEEE Transactions on Pattern analysis and Machine Intelligence , 1990 , 12 ( 10 ): 993 - 1001 .
SCHAPIRE R E . The strength of weak learn ability [J ] . Machine Learning , 1990 , 5 ( 2 ): 197 - 227 .
BARTOSZ K,MICHAŁ W,BOGUSŁAW C . Clustering-based ensembles for one-class classification [J ] . Information Sciences , 2014 , 264 ( Complete ): 182 - 195 .
MONTHER A , WANG D H . Fast decorrelated neural network ensembles with random weights [J ] . Information Sciences , 2014 , 264 : 104 - 117 .
KIM H C , PAN S N . Constructing support vector machine ensemble [J ] . Pattern Recognition , 2003 , 36 ( 12 ): 2757 - 2767 .
JIAO L C , LI Q . Kernel matching pursuit classifier ensemble [J ] . Pattern Recognition , 2006 , 39 ( 4 ): 587 - 594 .
MORDELET F , VERT J P . A bagging SVM to learn from positive and unlabeled examples [J ] . Pattern Recognition Letters , 2014 , 37 : 201 - 209 .
YANG K H , ZHAO L L . A new optimizing parameter approach of LSSVM multiclass classification model [J ] . Neural Computing & Applications , 2012 , 21 ( 5 ): 954 - 955 .
王晓丹 , 孙东延 , 郑春颖 , 等 . 一种基于AdaBoost的SVM分类器 [J ] . 空军工程大学学报(自然科学版) , 2006 , 7 ( 6 ): 54 - 57 .
WANG X D , SUN D Y , ZHENG C Y , et al . A combined SVM classifier based on AdaBoost [J ] . Journal of Air Force Engineering University(Natural Science Edition) , 2006 , 7 ( 6 ): 54 - 57 .
0
浏览量
684
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构