浏览全部资源
扫码关注微信
1. 江西理工大学 信息工程学院,江西 赣州 341000
2. 浙江大学 计算机科学技术学院,浙江 杭州 310027
[ "罗会兰(1974-),女,江西上高人,博士后,江西理工大学教授、硕士生导师,主要研究方向为机器学习、模式识别。" ]
[ "杜芳芳(1988-),女,河南武陟人,江西理工大学硕士生,主要研究方向为模式识别。" ]
[ "孔繁胜(1946-),男,浙江宁波人,浙江大学教授、博士生导师,主要研究方向为人工智能与知识发现。" ]
网络出版日期:2015-10,
纸质出版日期:2015-10-25
移动端阅览
罗会兰, 杜芳芳, 孔繁胜. 像素点特征加权的尺度自适应跟踪算法[J]. 通信学报, 2015,36(10):200-210.
Hui-lan LUO, Fang-fang DU, Fan-sheng KONG. Pixel feature-weighted scale-adaptive object tracking algorithm[J]. Journal on communications, 2015, 36(10): 200-210.
罗会兰, 杜芳芳, 孔繁胜. 像素点特征加权的尺度自适应跟踪算法[J]. 通信学报, 2015,36(10):200-210. DOI: 10.11959/j.issn.1000-436x.2015259.
Hui-lan LUO, Fang-fang DU, Fan-sheng KONG. Pixel feature-weighted scale-adaptive object tracking algorithm[J]. Journal on communications, 2015, 36(10): 200-210. DOI: 10.11959/j.issn.1000-436x.2015259.
针对目标运动过程中的姿态变化、旋转、干扰以及缩放等情况,提出了结合像素点特征加权的尺度自适应跟踪算法。首先利用目标区域中每个像素点的颜色特征和位置特征,建立目标模型;其次用目标的平均权值图估算尺度变化系数,以实现目标尺度的自适应;最后构建一个更新模型,对跟踪过程中的目标模型和背景模型进行更新。实验表明,提出的算法充分利用目标区域内各像素点间的差异,可以做到快速、有效的跟踪,且具有较强的顽健性。
An effective object tracking method using weighted pixel features was proposed to deal with all kinds of complicated tracking situations
such as target movement
rotation
background interference and scaling and so on.First
the color feature and location information of the pixels in the target area were used to build the object model.Then the average weight image was used to estimate the scale variation coefficient.The aim was to adapt to the scale changes of the target.Finally
an update model was proposed
which was able to renew the object model and background model.The experimental results show that the proposed algorithm could make full use of the differences between pixels in the target area
so it can track more quickly and more effectively with strong robustness.
ZHANG K , SONG H . Real-time visual tracking via online weighted multiple instance learning [J ] . Pattern Recognition , 2013 , 46 ( 1 ): 397 - 411 .
ZHANG K , ZHANG L , YANG M H . Real-time compressive tracking [A ] . Computer Vision–ECCV 2012 [C ] . Springer Berlin Heidelberg , 2012 . 864 - 877 .
ZHANG K , ZHANG L , YANG M H . Real-time object tracking via online discriminative feature selection [J ] . IEEE Transactions on Image Processing , 2013 , 22 : 4664 - 4677 .
COMANICIU D , RAMESH V , MEER P . Real-time tracking of non-rigid objects using mean shift [A ] . Proc of IEEE Conference on Computer Vision and Pattern Recognition [C ] . 2000 . 142 - 149 .
COMANICIU D , RAMESH V , MEER P . Kernel-based object tracking [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2003 , 25 ( 5 ): 564 - 577 .
NING J , ZHANG L , ZHANG D , et al . Robust mean-shift tracking with corrected background-weighted histogram [J ] . IET Computer Vision , 2012 , 6 ( 1 ): 62 - 69 .
NING J , ZHANG L , ZHANG D , et al . Scale and orientation adaptive mean shift tracking [J ] . Computer Vision,IET , 2012 , 6 ( 1 ): 52 - 61 .
ZHANG K , ZHANG L , YANG M H , et al . Fast tracking via spatio-temporal context learning [J ] . arXiv preprint arXiv:1311.1939 , 2013 .
赵凌 , 冯镔 , 邱锦波 . 基于自适应分块外观模型的视觉跟踪 [J ] . 通信学报 , 2011 , 32 ( 10 ): 166 - 173 .
ZHAO L , FENG B , QIU J B . Fragment-based visual tracking with adaptive appearance model [J ] . Journal on Communications , 2011 , 32 ( 10 ): 166 - 173 .
罩光成 , 尹浩 , 陈强 , 等 . 面向价值的战场信息处理与分发优化算法 [J ] . 通信学报 , 2011 , 32 ( 3 ): 60 - 68 .
QIN G C , YIN H , CHEN Q , et al . Value-oriented optimal algorithm for battlefield information processing and disseminating [J ] . Journal on Communications , 2011 , 32 ( 3 ): 60 - 68 .
CEHOVIN L , KRISTAN M , LEONARDIS A . An adaptive coupled-layer visual model for robust visual tracking [A ] . Computer Vision(ICCV),2011 International Conference on [C ] . 2011 . 1363 - 1370 .
SANTNEr J , LEISTNER C , SAFFARI A , et al . Prost:parallel robust online simple tracking [A ] . 2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR) [C ] . 2010 . 723 - 730 .
KWON J , LEE K M . Visual tracking decomposition [A ] . 2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR) [C ] . 2010 . 1269 - 1276 .
KALAL Z , MIKOLAJCZYK K , MATAS J . Tracking learning detection [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2012 , 34 ( 7 ): 1409 - 1422 .
WANG S , LU H , YANG F , et al . Superpixel tracking [A ] . 2011 IEEE International Conference on Computer Vision(ICCV) [C ] . 2011 . 1323 - 1330 .
GODEC M , ROTH P M , BISCHOF H . Hough-based tracking of non-rigid objects [J ] . Computer Vision and Image Understanding , 2013 , 117 ( 10 ): 1245 - 1256 .
0
浏览量
703
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构