浏览全部资源
扫码关注微信
1. 贵州大学 理学院,贵州 贵阳 550025
2. 贵阳职业技术学院,贵州 贵阳 550023
[ "田有亮(1982-),男,贵州盘县人,博士,贵州大学副教授,硕士生导师,主要研究方向为算法博弈论、密码学与安全协议等。" ]
[ "王雪梅(1982-),女,贵州贵阳人,贵阳职业技术学院讲师,主要研究方向为应用概率统计、大数据分析应用等。" ]
[ "刘琳芳(1980-),女,河南焦作人,贵州大学讲师,主要研究方向为计算机应用技术等。" ]
网络出版日期:2015-09,
纸质出版日期:2015-09-25
移动端阅览
田有亮, 王雪梅, 刘琳芳. 基于马尔可夫决策的理性秘密共享方案[J]. 通信学报, 2015,36(9):222-229.
You-liang TIAN, Xue-mei WANG, Lin-fang LIU. Rational secret sharing scheme based on Markov decision[J]. Journal on communications, 2015, 36(9): 222-229.
田有亮, 王雪梅, 刘琳芳. 基于马尔可夫决策的理性秘密共享方案[J]. 通信学报, 2015,36(9):222-229. DOI: 10.11959/j.issn.1000-436x.2015249.
You-liang TIAN, Xue-mei WANG, Lin-fang LIU. Rational secret sharing scheme based on Markov decision[J]. Journal on communications, 2015, 36(9): 222-229. DOI: 10.11959/j.issn.1000-436x.2015249.
基于马尔可夫决策理论研究理性密码共享系统模型和秘密重构方法。首先利用马尔可夫决策方法,提出适合于理性秘密共享的系统模型,该模型包括参与者集合、状态集合、风险偏好函数、状态转移函数、回报函数等。在模型中,引入秘密重构中的参与者的风险偏好函数刻画秘密共享模型的状态集合和状态转移函数。其次,基于所提出的系统模型构造相应的理性秘密共享方案,基于马尔可夫策略解决各理性参与者在秘密共享方案中的秘密重构问题。最后对方案进行理论分析证明,给出理性秘密重构方案中折扣因子、回报函数、参与者风险偏好函数间的函数关系,其结果表明所提系统模型方法的合理性和有效性。
The reconstruction methods of a rational secret sharing based on the Markov decision was studied.Firstly
a rational secret sharing system model was proposed using the Markov decision process
which included the players set
the states set
the risk preference function
the state transfer function
the return function
etc.The risk preference function was introduced in order to depict the state set and the state transfer function in this model.Secondly
a rational secret sharing scheme was constructed based on the proposed system model
which was able to solve the secret reconstruction problems according to the Markov strategy.Finally
the functional relations of among the discount factor
the return func-tion and the risk preference function was proposed in this scheme.The analysis results show that the proposed model and scheme are rationality and validity.
HALPEN J , TEAGUE V . Rational secret sharing and multiparty com-putation:extended abstract [A ] . Proc of the 36th annual ACM Sympo-sium on Theory of Computing [C ] . New York , 2004 . 623 - 632 .
FISCHERR M , WRIGHT R . An application of game-theoretic tech-niques to cryptography [EB/OL ] . http://www.cs.rutgers.edu/~rwright1/Publications/dim93.ps http://www.cs.rutgers.edu/~rwright1/Publications/dim93.ps . 2011 .
DODIS Y , HALEVI S , RABIN T . A cryptographic solution to a game theoretic problem [A ] . Proc of CRYPTO2000 [C ] . Heidelberg,Springer , 2000 . 112 - 131 .
GORDON S D , KATZ J . Rational secret sharing,revisited [A ] . Proc of SCN 2006 [C ] . Heidelberg,Springer , 2006 . 229 - 241 .
ABRAHAM I , DOLEV D , GONEN R , et al . Distributed computing meets game theory:robust mechanisms for rational secret sharing and multiparty computation [A ] . Proc of the 25th Annual ACM Symp on Principles of Distributed Computing [C ] . New York , 2006 . 53 - 62 .
LYSYANSKAYA A , TRIANDOPOULOS N . Rationality and adver-sarial behaviour in multi-party computation(extended abstract) [A ] . Proc of CRYPTO2006 [C ] . Heidelberg,Springer , 2006 . 180 - 197 .
MALEKA S , AMJED S , PANDU R C. . The deterministic protocol for rational secret sharing [A ] . Proc of IEEE Int Parallel and Distributed Processing Symp [C ] . Piscataway,NJ , 2008 . 1 - 7 .
MALEKA S , AMJED S , PANDU R C. . Rational secret sharing with repeated games [A ] . Proc of Information Security Practice and Experi-ence [C ] . Berlin,Springer , 2008 . 334 - 346 .
ASHAROY G , LINDELL Y . Utility dependence in correct and fair rational secret sharing [A ] . Proc of CRYPTO2009 [C ] . Heidelberg,Springer , 2009 . 559 - 576 .
ZHANG Z F , LIU M L . Rational secret sharing as extensive games [J ] . Science China Information Sciences , 2013 , 56 ( 3 ): 1 - 13 .
田有亮 , 马建峰 , 彭长根 , 等 . 秘密共享体制的博弈论分析 [J ] . 电子学报 2011 , 39 ( 12 ): 2790 - 2795 .
TIAN Y L , MA J F , PENG C G , et al . Game-theoretic analysis for the secret sharing scheme [J ] . Acta Electronica Sinica , 2011 , 39 ( 12 ): 2790 - 2795 .
TIAN Y L , MA J F , PENG C G , et al . One-time rational secret sharing scheme based on Bayesian game [J ] . Wuhan University Journal of Nature Science , 2011 , 16 ( 5 ): 430 - 434 .
TIAN Y L , MA J F , PENG C G , et al . A rational framework for secure communication [J ] . Information Sciences , 2013 , 250 : 215 - 226 .
TIAN Y L , PENG C G , LIN D D , et al . Bayesian mechanism for ra-tional secret sharing scheme [J ] . Science China Information Sciences , 2015 , 58 ( 5 ): 1 - 13 .
田有亮 , 彭长根 , 马建峰 , 等 . 通用可组合公平安全多方计算协议 [J ] . 通信学报 2014 , 35 ( 2 ): 54 - 62 .
TIAN Y L , PENG C G , MA J F , et al . Universally composable secure multiparty computation protocol with fairness [J ] . Journal on Commu-nications , 2014 , 35 ( 2 ): 54 - 62 .
张恩 , 蔡永泉 . 理性的安全两方计算协议 [J ] . 计算机研究与发展 2013 , 50 ( 7 ): 1409 - 1417 .
ZHANG E , CAI Y Q . Rational secure two-party computation proto-col [J ] . Journal of Computer Research and Development , 2013 , 50 ( 7 ): 1409 - 1417 .
彭长根 , 刘海 , 田有亮 , 等 . 混合偏好模型下的分布式理性秘密共享方案 [J ] . 计算机研究与发展 2014 , 51 ( 7 ): 1476 - 1485 .
PENG C G , LIU H , TIAN Y L , et al . A distributed rational secret sharing scheme with hybrid preference model [J ] . Journal of Computer Research and Development , 2014 , 51 ( 7 ): 1476 - 1485 .
王伊蕾 , 郑志华 , 王皓 , 等 . 满足可计算序贯均衡的理性公平计算 [J ] . 计算机研究与发展 2014 , 51 ( 7 ): 1527 - 1537 .
WANG Y L , ZHENG Z H , WANG H , et al . Rational fair computation with computational sequential equilibrium [J ] . Journal of Computer Research and Development , 2014 , 51 ( 7 ): 1527 - 1537 .
0
浏览量
694
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构