浏览全部资源
扫码关注微信
1. 中央财经大学信息学院,北京 100081
2. 河南工程学院管理工程学院,河南 郑州 451191
[ "姜平(1979-),男,山东烟台人,山东工商学院讲师,主要研究方向为医学图像处理、机器学习等。" ]
[ "窦全胜(1971-),男,山东烟台人,博士,山东工商学院教授,主要研究方向为智能计算和数据挖掘、复杂自适应系统及其应用等。" ]
网络出版日期:2015-08,
纸质出版日期:2015-08-25
移动端阅览
姜平, 窦全胜. 基于点特异度和自适应分类策略的眼底图像分割方法[J]. 通信学报, 2015,36(8):161-170.
Ping JIANG, Quan-sheng DOU. Vessel segmentation of retinal image based on pixel specificity and self-adaptive classification strategy[J]. Journal on communications, 2015, 36(8): 161-170.
姜平, 窦全胜. 基于点特异度和自适应分类策略的眼底图像分割方法[J]. 通信学报, 2015,36(8):161-170. DOI: 10.11959/j.issn.1000-436x.2015229.
Ping JIANG, Quan-sheng DOU. Vessel segmentation of retinal image based on pixel specificity and self-adaptive classification strategy[J]. Journal on communications, 2015, 36(8): 161-170. DOI: 10.11959/j.issn.1000-436x.2015229.
提出基于点特异度和自适应分类策略的血管分割方法(SSVD
specificity and self-adaptive vessel detection),首先给出点特异度的定义,通过设置高点特异度阈值,实现主血管的提取,然后由多主体进行自适应像素分类,将每个未确定像素作为一个Agent,在多尺度点特异度阈值范围内,根据邻域Agent状态修订自身状态,逐步完成对像素的分类,最后通过多窗口去噪对噪音进行滤除完成对图像血管结构的分割。将SSVD方法应用到DRIVE数据库眼底图像的血管分割中,实验结果表明该方法要比现有其他方法具有更高的准确度和效率。
A new vessel segmentation method called specificity and self-adaptive vessel detection(SSVD)was proposed based on pixel specificity and self-adaptive classification strategy
in the beginning pixel specificity was defined
by setting a higher pixel specificity threshold
the main vessel skeleton was extracted; then self-adaptive classification process was implemented
and each of the remaining undetermined pixels acted as an Agent
within a multi-scale threshold range
Agent revised its own status according to the status of its neighbor
so as to complete the classification of the pixels; finally the noise was removed by multi-window noise filtering method.By testing SSVD on DRIVE database
the experiment shows that it is more accurate and efficient than state-of-the-art methods.
WASAN B , CERUTTI A , FORD S , et al . Vascular network changes in the retina with age and hypertension [J ] . Journal of Hypertension , 1995 , 13 ( 12 ): 1724 - 1728 .
WONG T Y , MCLNTOSH R . Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality [J ] . British Medical Bulletin , 2005 , 73 ( 1 ): 57 - 70 .
SUSSMAN E J , TSIARAS W G , SOPER K A . Diagnosis of diabetic eye disease [J ] . The Journal of the American Medical Association , 1982 , 247 ( 23 ): 3231 - 3234 .
WONG T Y , KLEIN R , COUPER D J . Retinal microvascular abnormalities and incident stroke:the atherosclerosis risk in communities study [J ] . The Lancet , 2001 , 358 ( 9288 ): 1134 - 1140 .
WONG T Y , KLEIN R , SHARRETT A R . Retinal arteriolar diameter and risk for hypertension [J ] . Annals of Internal Medicine , 2004 , 140 ( 4 ): 248 - 255 .
STAAL J , ABRAMOFF M , NIEMEIJER M , et al . Ridge-based vessel segmentation in color images of the retina [J ] . IEEE Transactions on Medical Imaging , 2004 , 23 : 501 - 509 .
SOARES J V B , LEANDRO J J G , CESAR R M . Retinal vessel segmentation using the 2D gabor wavelet and supervised classification [J ] . IEEE Trans Med Imag , 2006 . 1214 - 1222 .
RICCI E , PERFETTI R . Retinal blood vessel segmentation using line operators and support vector classification [J ] . IEEE Transactions on Medical Imaging , 2007 , 26 : 1357 - 1365 .
LIU J , TANG Y Y . Adaptive image segmentation with distributed behavior-based agents [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 1999 , 21 ( 6 ): 544 - 551 .
RICHARD N , DOJAT M , GARBAY C . Automated segmentation of human brain MR images using a multi-agent approach [J ] . Artificial Intelligence in Medicine , 2004 , 30 ( 2 ): 153 - 176 .
BOVENKAMP E G P , DIJKSTRA J , BOSCH J G . Multi-agent segmentation of IVUS images [J ] . Pattern Recognition , 2004 , 37 ( 4 ): 647 - 663 .
窦全胜 , 李国江 , 史忠植 , 等 . 三维网格空间上的自组装模型 [J ] . 自动化学报 , 2012 , 38 ( 10 ): 1595 - 1601 .
DOU Q S , LI G J , SHI Z Z , et al . Collective self-assembly model on three-dimensional grid space [J ] . Acta Automatica sinica , 2012 , 38 ( 10 ): 1595 - 1601 .
姜平 , 窦全胜 , 王晶 . 基于局部自适应点特异度阈值的眼底图像血管分割方法研究 [J ] . 南京大学学报 ( 自然科学版 ), 2015 , 51 ( 1 ): 165 - 173 .
JIANG P , DOU Q S , WANG J . Method for vessel segmentation on retinal image based on local adaptive pixel specificity threshold [J ] . Journal of Nanjing University ( Natural Science ), 2015 , 51 ( 1 ): 165 - 173 .
FRANGI A F , NIESSEN W J , VINCKEN K L , et al . Multiscale Vessel Enhancement Filtering [M ] . Springer,Heidelberg,Germany , 1998 .
BUDAI A , BOCK R , MAIER A , et al . Robust vessel segmentation in fundus images [J ] . International Journal of Biomedical Imaging , Germany , 2013 .
ZANA F , KLEIN J . Robust segmentation of vessels from retinal angiography [A ] . Proceedings of the International Conference on Digital Signal Processing [C ] . 1997 . 1087 - 1090 .
JIANG , MOJON D . Adaptive local thresholding by verification-based multi-threshold probing with application to vessel detection in retinal images [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2003 , 25 : 131 - 137 .
MENDONCA A , CAMPILHO A . Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction [J ] . IEEE Transactions on Medical Imaging , 2006 , 25 : 1200 - 1213 .
AL-DIRI B , HUNTER A , STEEL D . An active contour model for segmenting and measuring retinal vessels [J ] . IEEE Transactions on Medical Imaging , 2009 , 28 : 1488 - 1497 .
LAM B , GAO Y , LIEW A . General retinal vessel segmentation using regularization-based multiconcavity modeling [J ] . IEEE Transactions on Medical Imaging , 2010 , 29 : 1369 - 1381 .
MIRI M S , MAHLOOJIFAR A . Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction [J ] . IEEE Transactions on Biomedical Engineering , 2011 , 58 : 1183 - 1192 .
FRAZ M M , BARMAN S A , REMAGNINO P , et al . An approach to localize the retinal blood vessels using bit planes and centerline detection,Computer methods and programs in biomedicine [J ] . Press,Corrected Proof , 2011 , 108 ( 2 ): 600 - 616 .
YOU X , PENG Q , YUAN Y , et al . Segmentation of retinal blood vessels using the radial projection and semi-supervised approach,Pattern Recognition [J ] . 2011 , 44 : 2314 - 2324 .
NIEMEIJER M , VANGINNEKEN B , ABRAMOFF M . A linking framework for pixel classification based retinal vessel segmentation [A ] . SPIE Medical Imaging [C ] . 2009 .
SOARES J , LEANDRO J , JNIOR R . Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification [J ] . IEEE Transactions on Medical Imaging , 2006 , 25 : 1214 - 1222 .
STAAL J , ABRAMOFF M , NIEMEIJER M . Ridge-based vessel segmentation in color images of the retina [J ] . IEEE Transactions on Medical Imaging , 2004 , 23 : 501 - 509 .
LUPASCU C A , TEGOLO D , TRUCCO E . Retinal vessel segmentation using adaboost,information technology in biomedicine [J ] . IEEE Transactions on , 2010 , 14 : 1267 - 1274 .
MARTI R , ZWIGGELAAR R , et al . Automatic registration of mammograms based on linear structures [A ] . Information Processing in Medical Imaging [C ] . Springer Berlin Heidelberg , 2001 , 2082 : 162 - 168 .
FRAZ M M , REMAGNINO P , et al . Blood vessel segmentation methodologies in retinal images-a survey [J ] . Computer Methods and Programs in Biomedicine [J ] . 2012 , 108 : 407 - 433 .
ESPONA L , CARREIRA M J , et al . Progress in Pattern Recognition,Image Analysis and Applications [M ] . Berlin,Germany : Springer , 2008 , 5197 .
MENDONÇA A M , CAMPILHO A . Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction [J ] . IEEE Transactions on Medical Imaging , 2006 , 25 ( 9 ): 1200 - 1213 .
0
浏览量
793
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构