浏览全部资源
扫码关注微信
1. 北京邮电大学 信息安全中心,北京 100876
2. 北京邮电大学 灾备技术国家工程实验室,北京 100876
[ "常利伟(1986-),男,山西朔州人,北京邮电大学博士生,主要研究方向为密码学。" ]
[ "郑世慧(1979-),女,山东日照人,北京邮电大学讲师,主要研究方向为密码分析与设计。" ]
[ "谷利泽(1965-),男,辽宁营口人,北京邮电大学副教授、硕士生导师,主要研究方向为信息安全和网络完全。" ]
[ "雷敏(1979-),男,江西瑞昌人,北京邮电大学博士生,主要研究方向为信息隐藏与隐写分析。" ]
[ "杨义先(1961-),男,四川盐亭人,北京邮电大学教授,博士生导师,主要研究方向为编码理论、密码学、信息安全、信号与信息处理。" ]
网络出版日期:2015-06,
纸质出版日期:2015-06-25
移动端阅览
常利伟, 郑世慧, 谷利泽, 等. 多方控制量子通信协议[J]. 通信学报, 2015,36(6):139-148.
Li-wei CHANG, Shi-hui ZHENG, Li-ze GU, et al. Multi-party controlled quantum communication protocol[J]. Journal on communications, 2015, 36(6): 139-148.
常利伟, 郑世慧, 谷利泽, 等. 多方控制量子通信协议[J]. 通信学报, 2015,36(6):139-148. DOI: 10.11959/j.issn.1000-436x.2015221.
Li-wei CHANG, Shi-hui ZHENG, Li-ze GU, et al. Multi-party controlled quantum communication protocol[J]. Journal on communications, 2015, 36(6): 139-148. DOI: 10.11959/j.issn.1000-436x.2015221.
为了满足远距离多节点量子网络的需求,分别利用最大纠缠信道和部分纠缠信道构造了2个多方控制量子通信协议。最大纠缠信道时,利用投影测量实现多方控制四粒子X-态远程制备; 部分纠缠信道时,利用联合酉操作和最优POVM实现多方控制四粒子X-态远程制备。理论推导表明,第一个协议的效率达到100%且优于其他协议,第二协议的效率被有效提高且2种测量方法的构造方法可被用于同类协议。
In order to satisfy the requirements of long-distance multi-node quantum networks,two multi-party controlledquantum communication protocols are put forward via maximally and partially entangled quantum channels.For the maximally entangled channels
projective measurements are used to realizemulti-party controlled joint remote preparation of an arbitrary four-qubitX-state.For the partially entangled channels
collective unitary operations and optimal positive operator-valued measures are used to realize multi-party controlled joint remote preparation of an arbitrary four-qubitX-state.The theoretical analysis shows that the efficiency of the first scheme can be up to 100% which is suprior to that of others.In addition
the efficiency of the second scheme is effectively improved and the way to be used to construct two kinds of measurement methods can be utilized in the similar protocols.
LO H K . Classical-communication cost in distributed quantum information processing:a generalization of quantum communication complexity [J ] . Phys Rev A , 2000 , 62 :012313.
PATI A K , , Minimum classical bit for remote preparation and measurement of a qubit [J ] . Phys Rev A , 2000 , 63 :014302.
BENNETT C H , VINCENZO D P , SHOR P W , et al . Remote state preparation [J ] . Phys Rev Lett , 2001 , 87 :077902.
DEVETAK I , BERGER T . Low-entanglement remote state preparation [J ] . Phys Rev Lett , 2001 , 87 :197901.
ZENG B , ZHANG P . Remote-state preparation in higher dimension and the parallelizable manifold [J ] . Phys Rev A , 2002 , 65 :022316.
DENG L , CHEN A X , XU Y Q . High efficient scheme for remote state preparation with cavity QED [J ] . Chin Phys B , 2008 , 17 : 3725 - 3728 .
MA S Y , TANG P , CHEN X B , et al . Schemes for remotely preparing a six-particle entangled cluster-type state [J ] . Int J of Theor Phys , 2013 , 52 : 968 - 979 .
MA S Y , LUO M X , CHEN X B , et al . Schemes for remotely preparing an arbitrary four-qubit X-state [J ] . Quantum Inf Process , 2014 , 13 : 1951 - 965 .
WANG Y , JI X . Deterministic joint remote state preparation of arbitrary two- and three-qubit states [J ] . Chin Phys B , 2013 , 22 :020306.
LUO M X , DENG Y . Joint remote preparation of an arbitrary 4-qubit x-state [J ] . Int J Theor Phys , 2012 , 51 : 3027 - 3036 .
MA S Y , TANG P , LUO M X . Schemes for remotely preparing Brown-type entangled state [J ] . Int J of Quant Inf , 2013 , 11 :1350042.
CHANG L W , ZHENG S H , GU L Z , et al . Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels [J ] . Chin Phys B , 2014 , 23 :090307.
ZHOU N R , CHENG H L , TAO X Y , et al . Three-party remote state preparation schemes based on entanglement [J ] . Quantum Inf Process , 2014 , 13 : 513 - 526 .
WANG Z Y , LIU Y M , ZUO X Q , et al . Controlled remote state preparation [J ] . Commun Theor Phys , 2009 , 52 : 235 - 240 .
WANG D , YE L . Multiparty-controlled joint remote state preparation [J ] . Quantum Inf Process , 2013 , 12 : 3223 - 3237 .
CHEN X B , MA S Y , SU Y , et al . Controlled remote state preparation of arbitrary two and three qublt states via the Brown state [J ] . Quantum Inf Process , 2012 , 11 : 1653 - 1667 .
HAYASHI M , IWAMA K , NISHIMURA H , et al . Quantum Network Coding [R ] . Lecture Notes in Computer Science , 2007 . 610 - 621 .
GONG L H , LIU Y , ZHOU N R . Novel quantum virtual private network scheme for PON via quantum secure direct communication [J ] . Int J Theor Phys , 2013 , 52 : 3260 - 3268 .
HELSTROM C W . Quantum Dectection and Estimation Theory [M ] . Academic Press New York , 1976 .
MAR T , HORODECKI P , . Teleportation via generalized measurements and conclusive teleportation [EB/OL ] . http://arxiv.org/abs/quant-ph/9906039 http://arxiv.org/abs/quant-ph/9906039 .
ZOU X B , PAHLKE K , MATHIS W . Generation of a multi-photon Greenberger-horne-zeilinger state with linear optical elements and photon detectors [J ] . JOpt B:Quantum Semiclass , 2005 , 7 : 119 - 121 .
YAO X C , WANG T X , HE P X , et al . Observation of eight-photon entanglement [J ] . Nature (London) , 2012 , 6 : 224 - 228 .
MONZ T , SCHINDLER P . 14-qubit entanglement:creation and coherences [J ] . Phys Rev L , 2011 , 106 :130506 .
AHARONOV Y , VAIDMAN L . Properties of a quantum system during the time interval between two measurements [J ] . Phys Rev A , 1990 , 41 : 11 - 20 .
JOHANSEN L M . Quantum theory of successive projective measurements [J ] . Phys Rev A , 2007 , 76 :012119.
AHNERT S E , PAYNE M C . General implementation of all possible positive-operator-value measurements of single-photon polarization states [J ] . Phys Rev A , 2005 , 71 :012330.
ZIMAN M , BUZEK V . Realization of positive-operator-valued measures using measurement-assisted programmable quantum processors [J ] . Phys Rev A , 2005 , 72 :022343.
HAN Y , WU W , WU C W , et al . Realization of arbitrary positive-operator-value measurement of single atomic qubit via cavity QED [J ] . Chin Phys Lett , 2008 , 25 : 4195 - 4198 .
KUNJWAL R , HEUNEN C , FRITZ T . Quantum realization of arbitrary joint measurability structures [J ] . Phys Rev A , 2014 , 89 :052126.
RECK M , ZEILINGER A . Experimental realization of any discreteunitary operator [J ] . Phys Rev L , 1994 , 73 : 58 - 61 .
KNILL E , LAFLAMME R , MILBURN G J . A scheme for efficient quantum computation with linear optics [J ] . Nature (London) , 2001 , 409 : 46 - 52 .
PITTMAN T B,FITCH M J , JACOBS B C , FRANSON J D . Experimental controlled-NOT logic gate for single photons in the coincidence basis [J ] . Phys Rev A , 2003 , 68 :032316.
OBRIEN J L , PRYDE G J , WHITE A G , et al . Demonstration of an all-optical quantum controlled-NOT gate [J ] . Nature (London) , 2004 , 426 : 264 - 267 .
GAO W B , XU P , YAO X C . Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states [J ] . Phys Rev L , 2010 , 104 :020501.
BISWAS K K , SAJEED S . Design and realization of a quantum controlled NOT gate using optical implementation [J ] . International Journal of Advancements in Research Technology , 2012 , 1 : 2278 - 7763 .
0
浏览量
758
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构