浏览全部资源
扫码关注微信
空军工程大学 航空航天工程学院,陕西 西安 710038
[ "周伟(1984-),男,陕西西安人,空军工程大学博士生,主要研究方向为现代检测与传感网络技术、压缩感知、故障诊断。" ]
[ "景博(1965-),女,河北邢台人,空军工程大学教授,主要研究方向为故障预测与健康管理、可测试性设计、传感器网络、数据融合。" ]
[ "黄以锋(1982-),男,湖南衡阳人,空军工程大学讲师,主要研究方向为现代检测与传感网络技术、可测试性设计、故障诊断。" ]
[ "焦晓璇(1990-),男,山西运城人,空军工程大学博士生,主要研究方向为信息物理融合技术、测试性设计。" ]
[ "胡家兴(1991-),男,湖南张家界人,空军工程大学硕士生,主要研究方向为压缩感知。" ]
[ "梁威(1992-),男,河南信阳人,空军工程大学硕士生,主要研究方向为测试性设计、验证与评估。" ]
网络出版日期:2015-05,
纸质出版日期:2015-05-25
移动端阅览
周伟, 景博, 黄以锋, 等. 基于CS的机载分簇型WSN数据采集方法[J]. 通信学报, 2015,36(5):130-139.
HOUWei Z, INGBo J, UANGYi-feng H, et al. CS-based data collection method for airborne clustering WSN[J]. Journal on communications, 2015, 36(5): 130-139.
周伟, 景博, 黄以锋, 等. 基于CS的机载分簇型WSN数据采集方法[J]. 通信学报, 2015,36(5):130-139. DOI: 10.11959/j.issn.1000-436x.2015197.
HOUWei Z, INGBo J, UANGYi-feng H, et al. CS-based data collection method for airborne clustering WSN[J]. Journal on communications, 2015, 36(5): 130-139. DOI: 10.11959/j.issn.1000-436x.2015197.
提出一种适用机载分簇型WSN的数据采集方案。该方案一方面采用随机压缩采样的方式,有效地减少了硬件资源受限的簇成员节点的采样数据量,降低了簇成员节点对硬件资源的要求;另一方面,提出一种基于复合混沌—遗传算法的MP重构方法,将混沌理论良好的局部寻优特性与遗传算法强大的全局搜索能力相结合,有效提高了簇头或Sink中信号重构的性能。实验结果表明,该方案在有效减少簇成员节点采样数据量,且采样频率降为原采样频率1/8的基础上,仍能保证10
-7
数量级的重构精度,为实用型WSN的实现提供了有效借鉴。
A data acquisition scheme which was suitable for airborne clustering WSN was proposed.On the one hand
this scheme adopts the random compressive sampling could reduce the amount of sampling data of the cluster nodes ef-fectively
and greatly reducing the hardware requirements of the cluster nodes; on the other hand
put forward a MP re-construction method based on composite chaotic-genetic algorithm expressly
which combined the excellent local searching characteristics of chaos theory with the powerful global search ability of genetic algorithm
could improve the signal reconstruction performance of the cluster head or Sink effectively.The experimental results show that
by di
min-ishing the sampling frequency to 1/8 of the original sampling frequency
this random compressive sensing scheme can dramatically reduce the sampling quantity
and the reconstruction precision can reach 10
-7
magnitude.This random com-pressive sensing scheme provides a useful idea for practical WSN.
STEVEN M , ALBERT B . The advanced subminiature telemetry system (ASMT):a wireless,no intrusive,network based,instrumentation system [EB/OL ] . http://ttcdas.com/products/daus_encoders/pdf/_tech_papers/ tp_asmt.pdf http://ttcdas.com/products/daus_encoders/pdf/_tech_papers/ tp_asmt.pdf . 2007 .
ARMSTRONG N L , ANTAR Y M M . Investigation of the electro-magnetic interference threat posed by a wireless network inside a passenger aircraft [J ] . IEEE Transactions on Electromagnetic Compatibility , 2008 , 50 ( 2 ): 277 - 284 .
YEDAVALLI R K , BELAPURKAR R K . Application of wireless sensor networks to aircraft control and health management systems [J ] . Journal of Control Theory and Applications , 2011 , 9 ( 1 ): 28 - 33 .
JASLEEN K N , GHAZANFAR A S . A wireless sensor network based structural health monitoring system for an airplane [A ] . Proceedings of the 17th International Conference on Automation & Computing,Huddersfield [C ] . UK , 2011 . 240 - 245 .
JAMES A H J , JOSHUA K , MICHAEL P , et al . Monitoring of aircraft cabin particulate matter concentrations using a wireless sensor network [A ] . Proceedings of the 43rd International Conference on Environmental Systems [C ] . AIAA , Vail,USA , 2013 . 1 - 17 .
LI L , LI J . Research of compressed sensing theory in WSN data fusion [A ] . Proceedings of the 2011 Fourth International Symposium on Computational Intelligence and Design [C ] . Hangzhou,China , 2011 . 125 - 128 .
LIU X , LUO J , VASILAKOS A . Compressed data aggregation for energy efficient wireless sensor networks [A ] . Proceedings of the 8th Annual IEEE Communications Society Conference on Sensor,Mesh and Ad Hoc Communications and Networks [C ] . Salt Lake City,USA , 2011 . 46 - 54 .
ZOU Z Q , HU C C , ZHANG F , et al . WSN data acquisition by combining hierarchical routing method and compressive sensing [J ] . Sensors , 2014 ( 14 ): 16766 - 16784 .
WANG J , TANG S , YIN B , et al . Data gathering in wireless sensor networks through intelligent compressive sensing [A ] . Proceedings of the INFOCOM2012 [C ] . Orlando,USA , 2012 . 603 - 611 .
LUO C , WU F , SUN J , et al . Efficient measurement generation and pervasive sparsity for compressive data gathering [J ] . IEEE Transactions on Wireless Communications , 2010 , 9 ( 12 ): 3728 - 3738 .
WANG X , ZHAO Z F , XIA Y , et al . Compressed sensing for efficient random routing in multi-hop wireless sensor networks [A ] . Proceedings of the 2010 IEEE GLOBECOM Workshops [C ] . Miami,USA , 2010 . 266 - 271 .
WU X G , XIONG Y , HUANG W C , et al . An efficient compressive data gathering routing scheme for large-scale wireless sensor networks [J ] . Computers and Electrical Engineering , 2013 ,( 39 ): 1935 - 1946 .
CANDÈS E J , WAKIN M B . An introduction to compressive sampling [J ] . IEEE Signal Processing Magazine , 2008 , 25 ( 2 ): 21 - 30 .
余恺 , 李元实 , 王智 等 . 基于压缩感知的新型声信号采集方法 [J ] . 仪器仪表学报 , 2012 , 33 ( 1 ): 105 - 112 .
YU K , LI Y S , WANG Z , et al . New method for acoustic signal collection based on compressed sampling [J ] . Chinese Journal of Scientific Instrument , 2012 , 33 ( 1 ): 105 - 112 .
张金成 , 吕方旭 , 王钰 等 . WSN 中的分簇式压缩感知 [J ] . 仪器仪表学报 , 2014 , 35 ( 1 ): 169 - 177 .
ZHANG J C , LV F X , WANG Y , et al . Compressive sensing based on clustering network in WSN [J ] . Chinese Journal of Scientific Instrument , 2014 , 35 ( 1 ): 169 - 177 .
DONOHO D L . Compressed sensing [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 1 ): 1289 - 1306 .
尹宏鹏 , 刘兆栋 , 柴毅 等 . 压缩感知综述 [J ] . 控制与决策 , 2013 , 28 ( 10 ): 1441 - 1445 .
YIN H P , LIU Z D , CHAI Y , et al . Survey of compressed sensing [J ] . Control and Decision , 2013 , 28 ( 10 ): 1441 - 1445 .
石光明 , 刘丹华 , 高大化 等 . 压缩感知理论及其研究进展 [J ] . 电子学报 , 2009 , 37 ( 5 ): 1070 - 1081 .
SHI G M , LIU D H , GAO D H , et al . Advances in theory and application of compressed sensing [J ] . Acta Electronica Sinica , 2009 , 37 ( 5 ): 1070 - 1081 .
CANDÈS E J , ROMBERG J , TAO T . Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J ] . IEEE Trans on Information Theory , 2006 , 52 ( 2 ): 489 - 509 .
GAO Q , DUAN C D , FANG X B , et al . A study on matching pursuit based on genetic algorithm [A ] . Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation [C ] . Shanghai,China , 2011 . 283 - 286 .
SANTOS C . Reliability-redundancy optimization by means of a chaotic differential evolution approach [J ] . Chaos Solitons and Fractals , 2009 , 41 ( 2 ): 594 - 602 .
WANG F , DAI Y S , WANG S S . Chaos-genetic algorithm based on the cat map and its application on seimic wavelet estimation [A ] . Proceedings of the 2009 International Workshop on Chaos-Fractals Theories and applications [C ] . Shenyang,China , 2009 . 112 - 116 .
YU L , BARBOT J P , ZHENG G , et al . Compressive sensing with chaotic sequence [J ] . Signal Processing Letters , 2010 , 17 ( 8 ): 1 - 3 .
0
浏览量
933
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构