浏览全部资源
扫码关注微信
1. 北京工业大学 计算机学院,北京 100124
2. 山西师范大学 数学与计算机学院,山西 临汾 041004
3. 贵州大学 理学院,贵州 贵阳550025
[ "王洁(1977-),女,山西霍州人,北京工业大学博士生,山西师范大学副教授,主要研究方向为信息安全、算法博弈论。" ]
[ "蔡永泉(1956-),男,安徽肥东人,北京工业大学教授、博士生导师,主要研究方向为信息安全、密码学理论与应用。" ]
[ "田有亮(1982-),男,贵州盘县人,博士,贵州大学副教授、硕士生导师,主要研究方向为算法博弈论、密码学与安全协议等。" ]
网络出版日期:2015-05,
纸质出版日期:2015-05-25
移动端阅览
王洁, 蔡永泉, 田有亮. 基于博弈论的门限签名体制分析与构造[J]. 通信学报, 2015,36(5):148-155.
ANGJie W, AIYong-quan C, IANYou-liang T. Analysis and construction for threshold signature scheme based on game theory[J]. Journal on communications, 2015, 36(5): 148-155.
王洁, 蔡永泉, 田有亮. 基于博弈论的门限签名体制分析与构造[J]. 通信学报, 2015,36(5):148-155. DOI: 10.11959/j.issn.1000-436x.2015189.
ANGJie W, AIYong-quan C, IANYou-liang T. Analysis and construction for threshold signature scheme based on game theory[J]. Journal on communications, 2015, 36(5): 148-155. DOI: 10.11959/j.issn.1000-436x.2015189.
为了使门限签名体制更具有普适性,引入了“理性参与人”的概念,将所有参与者视为理性的个体,任何阶段以最大化自身利益为目标。基于博弈论对密钥生成和签名合成阶段各参与者的策略和效用进行了分析,证明了在传统门限签名方案中理性参与者没有动机参与签名,导致无法完成对消息的签名,并提出了理性密钥分发和理性签名合成的解决机制。经分析该方法能更好地满足实际需求。
The concept of “rational player” is introduced to make threshold signature system more general.In this new primitive
all players are regarded as rational individuals in the sense that they always try to maximize their profits as the goal at any phases.Each player's strategy and utility in key generation and signature synthesis phases are analyzed based on game theory.It is proved that rational players have no motivation to participate in signature in traditional threshold signature scheme
which might cause it impossible to complete threshold signature.Finally
the mechanism of rational key distribution and rational signature synthesis is proposed.Analysis shows the new method is more applicable than the previous schemes in the real-world applications.
DESMEDT Y , FRANKEL Y . Shared generation of authenticators and signatures [A ] . Proceeding of Advances in Cryptology-CRYPTO'91 [C ] . Springer-verlag , 1991 . 457 - 469 .
HARN L . Group-oriented (t,n) threshold signature and digital multi signature [J ] . IEEE Proceedings Computers and Digital Techniques , 1994 , 141 ( 5 ): 307 - 313 .
LI Z C , ZHANG J M , LUO J . Group-oriented (t,n) threshold digital signature schemes with traceable signers [A ] . Electronic Commerce Techniques,the Second International Symposium,ISEC2001 [C ] . 2001 . 57 - 69 .
HWANG M , LU E , et al . A practical (t,n) threshold proxy signature scheme based on the RSA cryptosystem [J ] . IEEE Transactions on Knowledge and Data Engineering , 2003 , 15 ( 16 ): 1552 - 1560 .
HWANG M S , CHANG T Y . Threshold signatures:current status and key issues [J ] . International Journal of Network Security , 2005 , 1 ( 3 ): 123 - 137 .
ALMANSA J , DAMGARD I , NIELSEN J . Simplified threshold RSA with adaptive and proactive security [A ] . EUROCRYPT 2006 [C ] . Petersburg,Russia , 2006 . 593 - 611 .
GENARO R , HALEVI S , KRAWCZYK H , et al . Threshold RSA for dynamic and ad-hoc group [A ] . EUROCRYPT 2008 [C ] . Istanbul,Turkey , 2008 . 88 - 107 .
芦殿军 , 张秉儒 , 赵海兴 . 基于多项式秘密共享的前向安全门限数字签名 [J ] . 通信学报 , 2009 , 30 ( 1 ): 45 - 49 .
LU D J , ZHANG B R , ZHAO H X . Forward-secure threshold signature scheme based on polynomial secret sharing [J ] . Journal on Communications , 2009 , 30 ( 1 ): 45 - 49 .
石贤芝 , 林昌露 , 张胜元 等 . 无可信中心下基于身份的门限签名方案 [J ] . 武汉大学学报 ( 理学版 ), 2013 , 59 ( 2 ): 137 - 142 .
SHI X Z , LIN C L , ZHANG S Y , et al . Identity-based threshold signature scheme with non-trusted dealer [J ] . Journal of Wuhan University ( Science Edition ), 2013 , 59 ( 2 ): 137 - 142 .
杨小东 , 李春梅 , 徐婷 等 . 无双线性对的基于身份的在线/离线门限签名方案 [J ] . 通信学报 , 2013 ,( 8 ): 185 - 190 .
YANG X D , LI C M , XU T , et al . ID-based on-line/off-line threshold signature scheme without bilinear pairing [J ] . Journal on Communications , 2013 , 34 ( 8 ): 185 - 190 .
HALPERN J , TEAGUE V . Rational secret sharing and multiparty computation [A ] . Proceedings of the 36th Annual ACM Symposium on Theory of Computing [C ] . New York : ACM Press , 2004 . 623 - 632 .
GORDON D , KATZ J . Rational secret sharing,revisited [A ] . Proceedings of SCN 2006 [C ] .LNCS 4116 Heidelberg : Springer , 2006 . 229 - 241 .
ABRAHARN D , DOLEV R , GONEN . Distributed computing meets game theory:robust mechanisms for rational secret sharing and multi-party computation [A ] . Proceedings of the 25th ACM Symposium on Principles of Distributed Computing [C ] . 2006 . 53 - 62 .
MALEKA S , AMJED S , PAUDU C . Rational secret sharing with repeated games [A ] . Proceedings of ISPEC 2008 [C ] .LNCS 4991. Heidelberg : Springer , 2008 . 334 - 346 .
田有亮 , 马建峰 , 彭长根 等 . 秘密共享的博弈论体制分析 [J ] . 电子学报 , 2011 , 39 ( 12 ): 2790 - 2795 .
TIAN Y L , MA J F , PENG C G , et al . Game-theoretic analysis for the secret sharing scheme [J ] . Acta Electronica Sinica , 2011 , 39 ( 12 ): 2790 - 2795 .
张恩 , 蔡永泉 . 基于双线性对的可验证的理性秘密共享方案 [J ] . 电子学报 , 2012 , 40 ( 5 ): 1050 - 1054 .
ZHANG E , CAI Y Q . A verifiable rational secret sharing scheme based on bilinear pairing [J ] . Acta Electronica Sinica , 2012 , 40 ( 5 ): 1050 - 1054 .
王伊蕾 , 郑志华 , 王皓 等 . 满足可计算序贯均衡的理性公平计算 [J ] . 计算机研究与发展 , 2014 , 51 ( 7 ): 1527 - 1537 .
WANG Y L , ZHENG Z H , WANG H , et al . Rational Fair computation with computational sequential equilibrium [J ] . Journal of Computer Research and Development , 2014 , 51 ( 7 ): 1527 - 1537 .
BONEH D , FRANKLIN M . Identity based encryption from the weil pairing [J ] . Extended Abstract in Crypto , 2001 , 586 - 615 .
BONEH D , LYNN B , SHACHAM H . Short signatures from weil pairing [J ] . Journal of Cryptography , 2004 , 17 ( 4 ): 277 - 290 .
0
浏览量
1157
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构