浏览全部资源
扫码关注微信
1. 北京邮电大学 博士后流动站,北京 100876
2. 北京天融信公司 企业博士后工作站,北京 100085
[ "高长喜(1978-),男,山东嘉祥人,北京天融信公司博士后、系统架构师,主要研究方向为网络与信息安全、高性能安全网关、网络流量分类和应用协议识别。" ]
[ "吴亚飚(1971-),男,福建尤溪人,北京天融信公司总工程师、高级工程师,主要研究方向为安全网关技术架构、操作系统安全、内容/数据安全、安全硬件加速技术等。" ]
[ "王枞(1958-),女,北京人,北京邮电大学教授、博士生导师,主要研究方向为智能信息处理、网络信息安全、容灾备份等。" ]
网络出版日期:2015-09,
纸质出版日期:2015-09-25
移动端阅览
高长喜, 吴亚飚, 王枞. 基于抽样分组长度分布的加密流量应用识别[J]. 通信学报, 2015,36(9):65-75.
Chang-xi GAO, Ya-biao WU, Cong WANG. Encrypted traffic classification based on packet length distribution of sampling sequence[J]. Journal on communications, 2015, 36(9): 65-75.
高长喜, 吴亚飚, 王枞. 基于抽样分组长度分布的加密流量应用识别[J]. 通信学报, 2015,36(9):65-75. DOI: 10.11959/j.issn.1000-436x.2015171.
Chang-xi GAO, Ya-biao WU, Cong WANG. Encrypted traffic classification based on packet length distribution of sampling sequence[J]. Journal on communications, 2015, 36(9): 65-75. DOI: 10.11959/j.issn.1000-436x.2015171.
基于确定性抽样数据分组序列的位置、方向、分组长度和连续性、有序性等流统计特征和典型的分组长度统计签名,并结合带数据分组位置、方向约束和半流关联动作的提升型DPI,提出了一种基于假设检验的加密流量应用识别统计决策模型,包括分组长度统计签名决策模型和DFI决策模型,并给出了相应的分组长度统计签名匹配算法以及基于DPI和DFI混合方法的加密流量应用识别算法。实验结果表明,该方法能够成功捕获加密应用在流坐标空间中独特的统计流量行为,并同时具有极高的加密识别精确率、召回率、总体准确率和极低的加密识别误报率、总体误报率。
A hypothesis testing-based statistical decision model (HTSDM) for application identification of encrypted traf-fic was presented.HTSDM was based on packet length distribution of deterministic sampling sequence at flow level
which was characterized by packet positions
packet directions
packet sizes
packet arrival continuity and packet arrival order.HTSDM boosted deep packet inspection (DPI) by introducing constraints of packet position and direction as well as inter-flow correlation action.A hybrid method of encrypted traffic classification combining DPI and dynamic flow in-spection (DFI) was proposed based on HTSDM.Experiment results show that this method can effectively identify the unique statistical traffic behavior of encrypted application in flow coordinate space
and achieve high precision
recall and overall accuracy while keeping low false positive rate (FPR) and overall FPR.
GOMES J V , INÁCIO P R M , PEREIRA M , et al . Detection and classification of peer-to-peer traffic:a survey [J ] . ACM Computing Surveys , 2013 , 45 ( 3 ): 1 - 40 .
MOORE A , ZUEV D , CROGAN M . Discriminators for use in flow-based classification [R ] . Technical Report RR-05-13,ISSN 1470-5559,University of London , 2005 .
HJELMVIK E , JOHN W . Breaking and improving protocol obfusca-tion [R ] . Technical Report No.2010-05,ISSN 1652-926X,Chalmers University of Technology , 2010 .
LU C N , HUANG C Y , LIN Y D , et al . Session level flow classifica-tion by packet size distribution and session grouping [J ] . Computer Networks , 2012 , 56 ( 1 ): 260 - 272 .
BAR-YANAI R , LANGBERG M , PELEG D , RODITTY L . Realtime classification for encrypted traffic [A ] . Proceedings of 9th International Symposium on Experimental Algorithms (SEA 2010) [C ] . 2010 . 373 - 385 .
ALSHAMMARI R , ZINCIR-HEYWOOD A N . Machine learning based encrypted traffic classification:identifying SSH and skype [A ] . Proceedings of the 2009 IEEE Symposium on Computation Intelli-gence in Security and Defense Applications (CISDA 2009) [C ] . Ottawa , 2009 . 1 - 8 .
DUSI M , ESTE A , GRINGOLI F , SALGARELLI L . Using GMM and SVM-based techniques for the classification of SSH-encrypted traffic [A ] . Proceedings of the 44th IEEE International Conference on Com-munication(ICC' 09) [C ] . Dresden , 2009 . 1 - 6 .
NGUYEN T , ARMITAGE G . A survey of techniques for internet traf-fic classification using machine learning [J ] . IEEE Communications Surveys &Tutorials , 2008 , 10 ( 4 ): 56 - 76 .
CROTTI M , GRINGOLI F , SALGARELLI L . Impact of asymmetric routing on statistical traffic classification [A ] . Proceedings of the 7th IEEE Global Communications Conference (GLOBECOMM 2009) [C ] . Honolulu , 2009 . 1 - 8 .
0
浏览量
1173
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构