浏览全部资源
扫码关注微信
吉林大学 通信工程学院,吉林 长春 130012
[ "钱亮(1987-),男,满族,吉林四平人,吉林大学硕士生,主要研究方向为短距离无线通信技术、IEEE 802.15.4网络、射频识别技术。" ]
[ "钱志鸿(1957-),男,吉林长春人,吉林大学教授、博士生导师,主要研究方向为近程无线网络通信技术、无线传感器网络技术、RFID(射频识别)技术、UWB (超宽带)通信技术和物联网等。" ]
[ "李天平(1989-),男,湖北荆州人,吉林大学硕士生,主要研究方向为低速率无线个域网。" ]
[ "全薇(1964-),女,辽宁沈阳人,吉林大学教授、硕士生导师,主要研究方向为光学信息处理。" ]
网络出版日期:2015-08,
纸质出版日期:2015-08-25
移动端阅览
钱亮, 钱志鸿, 李天平, 等. 基于强化学习的IEEE 802.15.4网络区分服务策略[J]. 通信学报, 2015,36(8):171-181.
Liang QIAN, Zhi-hong QIAN, Tian-ping LI, et al. IEEE 802.15.4 differentiated service strategy based on reinforcement-learning[J]. Journal on communications, 2015, 36(8): 171-181.
钱亮, 钱志鸿, 李天平, 等. 基于强化学习的IEEE 802.15.4网络区分服务策略[J]. 通信学报, 2015,36(8):171-181. DOI: 10.11959/j.issn.1000-436x.2015149.
Liang QIAN, Zhi-hong QIAN, Tian-ping LI, et al. IEEE 802.15.4 differentiated service strategy based on reinforcement-learning[J]. Journal on communications, 2015, 36(8): 171-181. DOI: 10.11959/j.issn.1000-436x.2015149.
为了弥补IEEE 802.15.4协议原有区分服务机制的不足,提出了一种基于BCS(backoff counter scheme)与强化学习的区分服务策略。从终端节点出发,在原优先级区分服务策略的基础上增加 BCS 退避策略以解决流量较大场合业务区分问题;针对协调器节点,提出了基于强化学习的占空比调整策略,该策略能根据不同应用需求和环境变化自适应调整占空比。仿真结果表明,提出算法能针对不同环境满足高优先级业务性能需求,并能根据流量变化进行占空比调整,具有极强环境适应性。
To provide better support in differentiated service for IEEE 802.15.4
a novel differentiated service mechanism was proposed based on BCS(back off counter scheme)and reinforcement learning.In terms of end-device
BCS backoff strategy was added to original priority-based differentiated strategy to solve the service differentiation problem under higher traffic condition.Whil “ e for the coordinator
a reinforcement learning based duty-cycle adjustment algorithm was proposed toself-learning”an optimal duty-cycle according to different application requirements and environmental changes.Simulation shows that the proposed algorithm can meet the performance requirements of high-priority service under different environments and adjust the duty-cycle when traffic is changed
which showed a strong environmental adaptability.
CALLAWAY E , GORDAY P , HESTER L . Home networking with IEEE 802.15.4:a developing standard for low-rate wireless personal area networks [J ] . IEEE Communications Magazine , 2002 , 40 ( 8 ): 70 - 77 .
OTTO C,MILENKOVIĆ A , SANDERS C . System architecture of a wireless body area sensor network for ubiquitous health monitoring [J ] . Journal of Mobile Multimedia , 2006 , 1 ( 4 ): 307 - 326 .
CAO X , CHEN J , ZHANG Y . Development of an integrated wireless sensor network micro-environmental monitoring system [J ] . ISA Transactions , 2008 , 47 ( 3 ): 247 - 255 .
IEEE 802.15.4 Standard(2003)Part 15.4:Wireless Medium Access Control(MAC)and Physical Layer(PHY)Specifications for Low-Rate Wireless Personal Area Networks(LR-WPANs) [S ] . IEEE-SA Standards Board , 2003 .
TSENG P , FENG K , LIN Y . Wireless location tracking algorithms for environments with insufficient signal sources [J ] . IEEE Transactions on Mobile Computing , 2009 , 8 ( 12 ): 1676 - 1689 .
HO C , LIN C , HWANG W . Dynamic GTS allocation scheme in IEEE 802.15.4 by multi-factor [A ] . 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing(IIH-MSP) [C ] . Piraeus , 2012 . 457 - 460 .
KOUBÂA A , ALVES M , NEFZI B . Improving the IEEE 802.15.4 slotted CSMA/CA MAC for time-critical events in wireless sensor networks [A ] . Proceedings of the Workshop on Real Time Networks(RTN ’06) [C ] . Dresden , 2006 . 270 - 277 .
KIPINS D , WILLIG A , HAUER J . The angel IEEE 802.15.4enhancement layer:coupling priority queueing and service differentiation [A ] . Wireless Conference,EW 2008.14th European [C ] . Prague , 2008 . 1 - 7 .
ROHM D , GOYAL M , HOSSEINI S. . A simulation based analysis of the impact of IEEE 802.15.4 MAC parameters on the performance under different traffic loads [J ] . Mobile Information Systems , 2009 , 5 ( 1 ): 81 - 99 .
SUTTON R , BARTO A . Reinforcement Learning:An Introduction [M ] . Massachusetts : MIT Press , 1998 .
SUTTON R , BARTO A . Introduction to Reinforcement Learning [M ] . Massachusetts : MIT Press , 1998 .
Multi-armed bandit [EB/OL ] . http://en.wikipedia.org/wiki/Multi-armed_bandit http://en.wikipedia.org/wiki/Multi-armed_bandit . 2014 .
HERNANDEZ-GARDIOL N , MAHADEVAN S . Hierarchical memory-based reinforcement learning [A ] . 14th Annual Neural Information Processing Systems Conference [C ] . 2001 . 1047 - 1053 .
0
浏览量
883
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构