浏览全部资源
扫码关注微信
1. 桂林电子科技大学 信息与通信学院,广西 桂林 541004
2. 桂林电子科技大学 广西无线宽带通信与信息处理重点实验室,广西 桂林 541004
3. 桂林电子科技大学 广西信息科学实验中心,广西 桂林 541004
1. 桂林电子科技大学 信息与通信学院,广西 桂林 541004;2.桂林电子科技大学 广西无线宽带通信与信息处理重点实验室,广西 桂林 541004;3.桂林电子科技大学 广西信息科学实验中心,广西 桂林 541004
[ "武小年(1972-),男,湖北监利人,桂林电子科技大学副教授,主要研究方向为信息安全、分布式计算。" ]
[ "彭小金(1988-),男,江西新余人,桂林电子科技大学硕士生,主要研究方向为信息安全。" ]
[ "杨宇洋(1989-),男,广西柳州人,桂林电子科技大学硕士生,主要研究方向为信息安全。" ]
[ "方堃(1990-),男,湖北武汉人,桂林电子科技大学硕士生,主要研究方向为信息安全。" ]
网络出版日期:2015-04,
纸质出版日期:2015-04-25
移动端阅览
武小年, 彭小金, 杨宇洋, 等. 入侵检测中基于SVM的两级特征选择方法[J]. 通信学报, 2015,36(4):19-26.
Xiao-nian WU, Xiao-jin PENG, Yu-yang YANG, et al. Two-level feature selection method based on SVM for intrusion detection[J]. Journal on communications, 2015, 36(4): 19-26.
武小年, 彭小金, 杨宇洋, 等. 入侵检测中基于SVM的两级特征选择方法[J]. 通信学报, 2015,36(4):19-26. DOI: 10.11959/j.issn.1000-436x.2015127.
Xiao-nian WU, Xiao-jin PENG, Yu-yang YANG, et al. Two-level feature selection method based on SVM for intrusion detection[J]. Journal on communications, 2015, 36(4): 19-26. DOI: 10.11959/j.issn.1000-436x.2015127.
针对入侵检测中的特征优化选择问题,提出基于支持向量机的两级特征选择方法。该方法将基于检测率与误报率比值的特征评测值作为特征筛选的评价指标,先采用过滤模式中的Fisher分和信息增益分别过滤噪声和无关特征,降低特征维数;再基于筛选出来的交叉特征子集,采用封装模式中的序列后向搜索算法,结合支持向量机选取最优特征子集。仿真测试结果表明,采用该方法筛选出来的特征子集具有更好的分类性能,并有效降低了系统的建模时间和测试时间。
To select optimized features for intrusion detection,a two-level feature selection method based on support vector machine was proposed.This method set an evaluation index named feature evaluation value for feature selection,which was the ratio of the detection rate and false alarm rate.Firstly,this method filtrated noise and irrelevant features to reduce the feature dimension respectively by Fisher score and information gain in the filtration mode.Then,a crossing feature subset was obtained based on the above two filtered feature sets.And combining support vector machine,the sequential backward selection algorithm in the wrapper mode was used to select the optimal feature subset from the crossing feature subset.The simulation test results show that,the better classification performance is obtained according to the selected optimal feature subset,and the modeling time and testing time of the system are reduced effectively.
ZHANG Y , YANG A , XIONG C , et al . Feature selection using data envelopment analysis [J ] . Knowledge-Based Systems , 2014 , 64 : 70 - 80 .
LEE M C . Using support vector machine with a hybrid feature selection method to the stock trend prediction [J ] . Expert Systems with Applications , 2009 , 36 ( 8 ): 10896 - 10904 .
YONGLI Z , YUNG Z , WEI M T , et al . An improved feature selectionalgorithm based on MAHALANOBIS distance for network intrusion detection [A ] . Sensor Network Security Technology and Privacy Communication System (SNS & PCS),2013 International Conference on [C ] . 2013 . 69 - 73 .
TESFAHUN A , BHASKARI D L . Intrusion detection using random forests classifier with SMOTE and feature reduction [A ] . Cloud &Ubiquitous Computing & Emerging Technologies (CUBE),2013 International Conference on [C ] . 2013 . 127 - 132 .
ARAUJO N V S , OLIVEIRA R , FERREIRA E W T , et al . Kappa-fuzzy aRTMAP:a feature selection based methodology to intrusion detection in computer networks [A ] . Trust,Security and Privacy in Computing and Communications (TrustCom),2013 12th IEEE International Conference on [C ] . 2013 . 271 - 276 .
ZHANG F , WANG D . An effective feature selection approach for network intrusion detection [A ] . Networking,Architecture and Storage (NAS),2013 IEEE Eighth International Conference on [C ] . 2013 . 307 - 311 .
HSU H H , HSIEH C W , LU M D . Hybrid feature selection by combining filters and wrappers [J ] . Expert Systems with Applications , 2011 , 38 ( 7 ): 8144 - 8150 .
XIE J , WANG C . Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases [J ] . Expert Systems with Applications , 2011 , 38 ( 5 ): 5809 - 5815 .
汪廷华 , 田盛丰 , 黄厚宽 . 特征加权支持向量机 [J ] . 电子与信息学报 , 2009 , 31 ( 3 ): 514 - 518 .
WANG T H , TIAN S F , HUANG H K . Feature weighted support vector machine [J ] . Journal of Electronics & Information Technology , 2009 , 31 ( 3 ): 514 - 518 .
CORTES , VAPNIK V . Support vector networks [J ] . Machine Learning , 1995 , 20 : 273 - 297 .
汪廷华 , 陈峻婷 . 核函数的选择研究综述 [J ] . 计算机工程与设计 , 2012 , 33 ( 3 ): 1181 - 1186 .
WANG T H , CHEN J T . Survey of research on kernel selection [J ] . Computer Engineering and Design , 2012 , 33 ( 3 ): 1181 - 1186 .
KDDCup99KDDdataset [EB/OL ] . http://kdd.ics.uci.edu/ databases/kddcup99/kddcup99.html http://kdd.ics.uci.edu/ databases/kddcup99/kddcup99.html , 2011
LI Y , XIA J , ZHANG S , et al . An efficient intrusion detection system based on support vector machines and gradually feature removal method [J ] . Expert Systems with Applications , 2012 , 39 ( 1 ): 424 - 430 .
Q Z,CHUN.H G , JIA J L . Intrusion detection system based on feature selection and support vector machine [A ] . Communications and Networking in China,ChinaCom'06,First International Conference on [C ] . 2006 . 1 - 5 .
XIAN J , PEI Y L , WEI G , et al . An algorithm application in intrusion forensics based on improved information gain [A ] . Web Society (SWS),2011 3rd Symposium on [C ] . 2011 . 100 - 104 .
BURGES C J C . A tutorial on support vector machines for pattern recognition [J ] . Data Mining and Knowledge Discovery , 1998 , 2 ( 2 ): 121 - 167 .
0
浏览量
1576
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构