浏览全部资源
扫码关注微信
1. 南京邮电大学 计算机学院,江苏 南京 210003
2. 南京邮电大学 宽带无线通信与传感网技术教育部重点实验室,江苏 南京 210003
[ "陈蕾(1975-),男,江西宜春人,博士,南京邮电大学副教授、硕士生导师,主要研究方向为可信服务计算、机器学习、数据挖掘。" ]
[ "杨庚(1961-),男,江苏建湖人,博士,南京邮电大学教授、博士生导师,主要研究方向为计算机通信与网络、并行与分布式计算、信息安全。" ]
[ "陈正宇(1978-),男,江苏淮安人,南京邮电大学博士生,主要研究方向为无线传感网数据融合、服务计算和隐私保护。" ]
[ "肖甫(1980-),男,湖南邵阳人,博士,南京邮电大学教授、博士生导师,主要研究方向为无线传感器网络、云计算和多媒体图像检索等。" ]
[ "许建(1980-),男,江苏徐州人,南京邮电大学副教授,主要研究方向为无线传感器网络与信息安全、智能信息处理。" ]
网络出版日期:2015-06,
纸质出版日期:2015-06-25
移动端阅览
陈蕾, 杨庚, 陈正宇, 等. 基于结构化噪声矩阵补全的Web服务QoS预测[J]. 通信学报, 2015,36(6):49-59.
Lei CHEN, Geng YANG, Zheng-yu CHEN, et al. Web services QoS prediction via matrix completion with structural noise[J]. Journal on communications, 2015, 36(6): 49-59.
陈蕾, 杨庚, 陈正宇, 等. 基于结构化噪声矩阵补全的Web服务QoS预测[J]. 通信学报, 2015,36(6):49-59. DOI: 10.11959/j.issn.1000-436x.2015118.
Lei CHEN, Geng YANG, Zheng-yu CHEN, et al. Web services QoS prediction via matrix completion with structural noise[J]. Journal on communications, 2015, 36(6): 49-59. DOI: 10.11959/j.issn.1000-436x.2015118.
随着面向服务计算技术的快速发展,越来越多具有相同或相似功能的 Web 服务被部署在网络上。用户进行服务选择之前,通常需要根据历史调用信息对未使用过的服务QoS进行预测。由于历史调用信息收集过程缺乏有效的监督和约束机制,所采样的QoS信息往往容易受到结构化噪声污染,从而导致现有方法预测性能急剧下降。为了克服这个困难,通过将Web服务QoS预测问题建模为L2
1范数正则化矩阵补全问题,提出了一类基于结构化噪声矩阵补全的Web服务QoS预测方法。真实数据集上的实验结果表明,该方法不仅能精确地辨识出QoS采样矩阵中噪声行所在位置,而且能对缺失Web服务QoS进行有效预测。
With the rapid development of service-oriented computing
more and more Web services with the same or similar function are deployed on the Internet. Usually
before selecting the most suitable service
users need to predict QoS of unused services from the service invoking history. Due to the lack of effective supervision and constraint mechanisms
some number of the rows in the QoS sample matrix is often contaminated by the structural noise
which leads to a sharp decrease for QoS prediction performance. In order to address this problem
an efficient Web services QoS prediction approach via matrix completion with structural noise is proposed by formulating Web services QoS prediction problem as a L2
1-norm regularized matrix completion problem. The proposed approach can not only exactly detect the position where the data is contaminated
but also effectively predict the missing QoS values. Finally
experimental results performed on a real public dataset demonstrate the feasibility of our proposed approach.
XIA Y , CHEN P , BAO L , et al . A QoS-aware web service selection algorithm based on clustering [A ] . Proceedings of the 9th International Conference on Web Service [C ] . Washington,DC,USA , 2011 . 428 - 435 .
王尚广 , 孙其博 , 杨放春 . 基于全局QoS约束分解的Web服务动态选择 [J ] . 软件学报 , 2011 , 22 ( 7 ): 1426 - 1439 .
WANG S G , SUN Q B , YANG F C . Web service dynamic selection by the decomposition of global QoS constraints [J ] . Journal of Software , 2011 , 22 ( 7 ): 1426 - 1439 .
邓水光 , 黄龙涛 , 吴斌 , 等 . 一种QoS最优的语义Web服务自动组合方法 [J ] . 计算机学报 , 2013 , 36 ( 5 ): 1015 - 1030 .
DENG S G , HUANG L T , WU B . QoS optimal automatic composition of semantic Web services [J ] . Chinese Journal of Computers , 2013 , 36 ( 5 ): 1015 - 1030 .
PAREJO J A , SEGURA S , FERNANDEZ P . QoS-aware web services composition using GRASP with path relinking [J ] . Expert Systems with Applications , 2014 , 41 ( 9 ): 4211 - 4223 .
SHAO L S , ZHANG J , WEI Y , et al . Personalized QoS prediction for Web services via collaborative filtering [A ] . Proceedings of the 5th International Conference on Web Service [C ] . Salt Lake City,USA , 2007 . 439 - 446 .
邵凌霜 , 周立 , 赵俊峰 , 等 . 一种Web Service的服务质量预测方法 [J ] . 软件学报 , 2009 , 20 ( 8 ): 2063 - 2073 .
SHAO L S , ZHOU L , ZHAO J F , et al . Web service QoS prediction approach [J ] . Journal of Software , 2009 ,( 8 ): 2062 - 2073 .
ZHENG Z B , MA H , LYU M R , et al . QoS-aware web service recommendation by collaborative filtering [J ] . IEEE Transactions on Service Computing , 2011 , 4 ( 2 ): 140 - 152 .
WU J , CHEN L , FENG Y P , et al . Predicting quality of service for selection by neighborhood-based collaborative filtering [J ] . IEEE Transactions on Systems,Man and Cybernetics:Systems , 2013 , 43 ( 2 ): 428 - 439 .
ZHENG Z , MA H , LYU M , et al . Collaborative web service QoS prediction via neighborhood integrated matrix factorization [J ] . IEEE Transactions on Service Computing , 2013 , 6 ( 3 ): 289 - 299 .
YU Q , ZHENG Z.B . Trace norm regularized matrix factorization for service recommendation [A ] . Proceedings of the 11th International Conference on Web Service [C ] . Santa Clara,CA,USA , 2013 . 34 - 41 .
CAI X , NIE F P , HUANG H.et al . Multi-class L2,1-norm support vector machine [A ] . Proceedings of the 11th International Conference on Data Mining [C ] . Vancouver,BC , 2011 . 91 - 100 .
COMBETTES P L , WAJS V R . Signal recovery by proximal forward-backward splitting [J ] . Multiscale Modeling and Simulation , 2005 , 4 ( 4 ): 1168 - 1200 .
BOYD S , VANDENBERGHE L . Convex optimization [M ] . Cambridge University Press , 2009 .
CAI J F , CANDES E J , SHEN Z . A singular value thresholding algorithm for matrix completion [J ] . SIAM Journal of Optimization , 2010 , 20 ( 4 ): 1956 - 1982 .
CANDES E J , RECHTt B . Exact matrix completion via convex optimization [J ] . Foundations of Computational Mathematics , 2009 , 9 ( 6 ): 717 - 772 .
MA S , GOLDFARB D , CHEN L . Fixed point and Bregman iterative methods for matrix rank minimization [J ] . Mathematics Programming Series A , 2011 , 128 ( 1 ): 321 - 353 .
LIN Z , CHEN M , MA Y . The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices [R ] . UIUC Uuniversity,Technical report,UILU-ENG-09-2214 , 2010 .
WEN Z W , YIN W T , ZHANG Y . Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm [R ] . Rice University,Technical Report TR1007 , 2010 .
BOUMAL N , ABSIL P . RTRMC:a riemannian trust region method for matrix completion [A ] . Proceedings of the 25th Annual Conference on Neural Information Processing Systems [C ] . Granada,Spain , 2011 . 406 - 414 .
LARSEN R M . PROPACK-software for large and sparse SVD calculations [EB/OL ] . .http://soi.stanford.edu/~rmunk/PROPACK/ .http://soi.stanford.edu/~rmunk/PROPACK/ .
0
浏览量
1353
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构