浏览全部资源
扫码关注微信
哈尔滨工程大学 计算机科学与技术学院,黑龙江 哈尔滨150001
[ "谢静(1986-),女,湖北随州人,哈尔滨工程大学博士生,主要研究方向为数据挖掘、隐私保护。" ]
[ "张健沛(1956-),男,黑龙江哈尔滨人,哈尔滨工程大学教授、博士生导师,主要研究方向为数据挖掘、隐私保护、社会网络等。" ]
[ "杨静(1962-),女,黑龙江哈尔滨人,哈尔滨工程大学教授、博士生导师,主要研究方向为数据挖掘、隐私保护、机器学习等。" ]
[ "张冰(1986-),女,黑龙江哈尔滨人,哈尔滨工程大学博士生,主要研究方向为数据挖掘、隐私保护。" ]
网络出版日期:2015-04,
纸质出版日期:2015-04-25
移动端阅览
谢静, 张健沛, 杨静, 等. 面向近邻泄露的数值型敏感属性隐私保护方法[J]. 通信学报, 2015,36(4):97-104.
Jing XIE, Jian-pei ZHANG, Jing YANG, et al. Privacy preserving approach based on proximity privacy for numerical sensitive attributes[J]. Journal on communications, 2015, 36(4): 97-104.
谢静, 张健沛, 杨静, 等. 面向近邻泄露的数值型敏感属性隐私保护方法[J]. 通信学报, 2015,36(4):97-104. DOI: 10.11959/j.issn.1000-436x.2015093.
Jing XIE, Jian-pei ZHANG, Jing YANG, et al. Privacy preserving approach based on proximity privacy for numerical sensitive attributes[J]. Journal on communications, 2015, 36(4): 97-104. DOI: 10.11959/j.issn.1000-436x.2015093.
提出一种面向近邻泄露的数值型敏感属性隐私保护方法,该方法首先在保护准标识符属性和数值型敏感属性内在关系的前提下,将数值型敏感属性进行离散化划分;然后,提出一种面向近邻泄露的隐私保护原则——(k,ε)-proximity;最后,设计了最大邻域优先算法MNF(maximal neighborhood first)来实现该原则。实验结果表明,提出的方法能在有效保护数值型敏感信息不泄露的同时保持较高的数据效用,并且保护了数据间的关系。
A model based on proximity breach for numerical sensitive attributes is proposed.At first,it divides numerical sensitive value into several intervals on the premise of protecting the internal relations between quasi-identifier attributes and numerical sensitive attributes.Secondly,it proposes a (k,ε)-proximity privacy preserving principle to defense proximity privacy.In the end,a maximal neighborhood first algorithm (MNF) is designed to realize the (k,ε)-proximity.The experiment results show that the proposed model can preserve privacy of sensitive data well meanwhile it can also keep a high data utility and protect the internal relations.
XU Y , MA T , TANG M , et al . A survey of privacy preserving data publishing using generalization and suppression [J ] . Appl Math , 2014 , 8 ( 3 ): 1103 - 1116 .
SWEENEY L . k-anonymity:a model for protecting privacy [J ] . International Journal of Uncertainty,Fuzziness and Knowledge based Systems , 2002 , 10 ( 5 ): 557 - 570 .
TASSA T , MAZZA A , GIONIS A . k-concealment:an alternative model of k-type anonymity [J ] . Transactions on Data Privacy , 2012 , 5 ( 1 ): 189 - 222 .
MACHANAVAJJHALA A , GEHRKE J , KIFER D . l-diversity:privacy beyond k-anonymity [J ] . ACM Transactions on Knowledge Discovery from Data , 2007 , 1 ( 1 ): 1 - 52 .
ABDALAAL A , NERGIZ M E , SAYGIN Y . Privacy-preserving publishing of opinion polls [J ] . Computers & Security , 2013 , 37 ( 9 ): 143 - 154 .
SAROWAR S A H M , LI J , DING X , et al . A general framework for privacy preserving data publishing [J ] . Knowledge-Based Systems , 2013 , 54 ( 12 ): 276 - 287 .
YE M , WU X , HU X , et al . Anonymizing classification data using rough set theory [J ] . Knowledge-Based Systems , 2013 , 43 ( 5 ): 82 - 94 .
ZHANG Q , KOUDAS N , SRIVASTAVA D , et al . Aggregate query answering on anonymized tables [A ] . Data Engineering,2007,ICDE 2007,IEEE 23rd International Conference [C ] . 2007 . 116 - 125 .
LI J X , TAO Y F , XIAO X K . Preservation of proximity privacy in publishing numerical sensitive data [A ] . Proceedings of ACM Conference on Management of Data (SIGMOD) [C ] . 2008 . 473 - 486 .
韩建民 , 于娟 , 虞慧群 , 等 . 面向数值型敏感属性的分级 l-多样性模型 [J ] . 计算机研究与发展 , 2011 , 48 ( 1 ): 147 - 158 .
HAN J M , YU J , YU H Q , et al . A multi-level l-diversity model for numerical sensitive attributes [J ] . Journal of Computer Research and Development , 2011 , 48 ( 1 ): 147 - 158 .
WANG T , MENG S , BAMBA B , et al . A general proximity privacy principle [A ] . Data Engineering,2009,ICDE'09,IEEE 25th International Conference [C ] . 2009 . 1279 - 1282 .
WANG T , LIU L . XColor:protecting general proximity privacy [A ] . Data Engineering (ICDE),2010 IEEE 26th International Conference [C ] . 2010 . 960 - 963 .
CAMPAN A , COOPER N , TRUTA T M . On-the-fly Generalization Hierarchies for Numerical Attributes Revisited [M ] . Secure Data Management,Springer Berlin Heidelberg , 2011 . 18 - 32 .
LEFEVRE K , DEWITT D J , RAMAKRISHNAN R . Incognito:Efficient full-domain k –anonymity [A ] . Proc of the 2005 ACM SIGMOD Int Conf on Management of data [C ] . New York , 2005 . 49 - 60 .
杨晓春 , 王雅皙 , 王斌等 . 数据发布中面向多敏感属性的隐私保护方法 [J ] . 计算机学报 , 2008 , 31 ( 4 ): 574 - 587 .
YANG X C , WANG Y Z , WANG B , et al . Privacy preserving approaches for multiple sensitive attributes in data publishing [J ] . Chinese Journal of Computers , 2008 , 31 ( 4 ): 574 - 587 .
LEFEVRE K , DEWITT D J , RAMAKRISHNAN R . Mondrian multidimensional k-anonymity [A ] . Proc of the 22nd Int Conf on Data Engineering [C ] . New York , 2006 . 1 - 11 .
0
浏览量
812
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构