浏览全部资源
扫码关注微信
安徽大学 电气工程与自动化学院,安徽 合肥 230601
[ "朱仁欢(1989-),男,安徽安庆人,安徽大学硕士生,主要研究方向为模式识别、图像特征提取等。" ]
[ "高清维[通信作者](1965-),男,安徽合肥人,安徽大学教授、博士生导师,主要研究方向为数字信号处理、小波变换、多尺度几何分析、混沌与分形理论等。E-mail:qingweigao@ahu.edu.cn。" ]
[ "卢一相(1980-),男,安徽阜阳人,安徽大学博士生,主要研究方向为图像处理、模式识别等。" ]
[ "孙冬(1983-),男,安徽阜阳人,安徽大学博士生,主要研究方向为图像处理、模式识别等。" ]
网络出版日期:2015-04,
纸质出版日期:2015-04-25
移动端阅览
朱仁欢, 高清维, 卢一相, 等. 改进的图像局部特征区域描述方法[J]. 通信学报, 2015,36(4):179-184.
Ren-huan ZHU, Qing-wei GAO, Yi-xiang LU, et al. Improved method for local image feature region description[J]. Journal on communications, 2015, 36(4): 179-184.
朱仁欢, 高清维, 卢一相, 等. 改进的图像局部特征区域描述方法[J]. 通信学报, 2015,36(4):179-184. DOI: 10.11959/j.issn.1000-436x.2015089.
Ren-huan ZHU, Qing-wei GAO, Yi-xiang LU, et al. Improved method for local image feature region description[J]. Journal on communications, 2015, 36(4): 179-184. DOI: 10.11959/j.issn.1000-436x.2015089.
针对描述子的性能与维数相矛盾的问题,提出了一种顽健的图像局部特征区域的描述方法。首先按照像素排序将局部特征区域分割为若干个子区域,然后利用基于阈值的分段局部描述子设计方法计算描述子,并采用纹理谱加权方法累加局部描述子得到子区域描述子,最后连接各部分子区域描述子得到最终的特征描述子。该方法综合了全局信息和局部信息,在保证描述子维数较小时对噪声具有一定的顽健性。实验结果表明该方法不仅对单调强度变化和旋转变化具有不变性,而且对其他几何和光学变换具有较好的顽健性。
A robust method for local image feature region description was proposed based on the problem of contradiction between performance and dimension of descriptor.First,the local feature region was divided into several subregions according to their intensity order.Then,the method of segmented local feature description based on threshold was used to compute the descriptor,and the method of the weighted texture spectrum was used to cumulate the local descriptor.At last,concatenate the descriptors of every subregion together to get the final descriptor of the interest region.This method combined overall information and local information together,and robust to noise when ensure the dimension of descriptor was small.The experimental results show that the proposed descriptor is not only invariant to monotonic intensity changes and image rotation but also robust to many other geometric and photometric transformations.
LOWE D G . Distinctive image features from scale-invariant keypoints [J ] . International Journal of Computer Vision , 2004 , 60 ( 2 ): 91 - 110 .
TUYTELAARS T , VAN GOOL L . Matching widely separated views based on affine invariant regions [J ] . International Journal of Computer Vision , 2004 , 59 ( 1 ): 61 - 85 .
NISTER D , STEWENIUS H . Scalable recognition with a vocabulary tree [A ] . IEEE Conference on Computer Vision and Pattern Recognition [C ] . New York,NY,USA , 2006 . 2161 - 2168 .
BROWN M , LOWE D G . Automatic panoramic image stitching using invariant features [J ] . International Journal of Computer Vision , 2007 , 74 ( 1 ): 59 - 73 .
KE Y , SUKTHANKAR R . PCA-SIFT:A more distinctive representation for local image descriptors [A ] . IEEE Conference on Computer Vision and Pattern Recognition [C ] . Washington,DC,USA , 2004 . 506 - 513 .
MIKOLAJCZYK K , SCHMID C . A performance evaluation of local descriptors [J ] . IEEE Transaction on Pattern Analysis and Machine Intelligence , 2005 , 27 ( 10 ): 1615 - 1630 .
BAY H , TUYTELAARS T , VAN GOOL L . Surf:Speeded up Robust Features [M ] . Berlin Heidelberg . Springer-Verlag , 2006 .
HEIKKILA M , PIETIKAINEN M , SCHMID C . Description of interest regions with local binary patterns [J ] . Pattern recognition , 2009 , 42 ( 3 ): 425 - 436 .
GUPTA R , PATIL H , MITTAL A . Robust order-based methods for feature description [A ] . IEEE Conference on Computer Vision and Pattern Recognition [C ] . San Francisco,CA,USA , 2010 . 334 - 341 .
TOLA E , LEPETIT V , FUA P . Daisy:An efficient dense descriptor applied to wide-baseline stereo [J ] . IEEE Transaction on PatternAnalysis and Machine Intelligence , 2010 , 32 ( 5 ): 815 - 830 .
DAHL A L , AANAES H , PEDERSEN K S . Finding the best feature detector-descriptor combination [A ] . International Conference on 3D Imaging,Modeling,Processing,Visualization and Transmission [C ] . Hangzhou,China , 2011 . 318 - 325 .
FAN B , WU F , HU Z . Rotationally invariant descriptors using intensity order pooling [J ] . IEEE Transaction on Pattern Analysis and Machine Intelligence , 2012 , 34 ( 10 ): 2031 - 2045 .
WANG Z , FAN B , WU F . Local intensity order pattern for feature description [A ] . IEEE International Conference on Computer Vision [C ] . Barcelona,Spain , 2011 . 603 - 610 .
Available online [EB/OL ] . http://www.robots.ox.ac.uk/~vgg/research/affine/ http://www.robots.ox.ac.uk/~vgg/research/affine/ .
MIKOLAJCZYK K , TUYTELAARS T , SCHMID C , et al . A comparison of affine region detectors [J ] . International Journal of Computer Vision , 2005 , 65 ( 1-2 ): 43 - 72 .
MIKOLAJCZYK K , SCHMID C . Scale & affine invariant interest point detectors [J ] . International Journal of Computer Vision , 2004 , 60 ( 1 ): 63 - 86 .
0
浏览量
732
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构