浏览全部资源
扫码关注微信
1. 湖南大学 信息科学与工程学院,湖南 长沙 410082
2. 湖南财政经济学院 信息管理系,湖南 长沙 410205
3. 长沙大学 经济管理系,湖南 长沙 410003
[ "荣辉桂(1975-),男,湖南株州人,博士,湖南大学副教授、硕士生导师,主要研究方向为大数据、云计算、电子商务等。" ]
[ "莫进侠(1987-),男,湖南邵阳人,湖南大学硕士生,主要研究方向为数据分类、云计算、移动互联网等。" ]
[ "常炳国(1965-),男,陕西榆林人,博士,湖南大学副教授,主要研究方向为数据集成、云存储管理、电子政务理论及应用等。" ]
[ "孙光(1972-),男,山东金乡人,博士,湖南财政经济学院副教授,主要研究方向为云安全、大数据应用、云隐蔽软件等。" ]
[ "龙飞(1983-),男,湖南岳阳人,博士,长沙大学讲师,主要研究方向为云计算、电子商务、信息系统等。" ]
网络出版日期:2015-03,
纸质出版日期:2015-03-25
移动端阅览
荣辉桂, 莫进侠, 常炳国, 等. 基于Shamir秘密共享的密钥分发与恢复算法[J]. 通信学报, 2015,36(3):265-274.
Hui-gui RONG, Jin-xia MO, Bing-guo CHANG, et al. Key distribution and recovery algorithm based on Shamir's secret sharing[J]. Journal of communications, 2015, 36(3): 265-274.
荣辉桂, 莫进侠, 常炳国, 等. 基于Shamir秘密共享的密钥分发与恢复算法[J]. 通信学报, 2015,36(3):265-274. DOI: 10.11959/j.issn.1000-436x.2015083.
Hui-gui RONG, Jin-xia MO, Bing-guo CHANG, et al. Key distribution and recovery algorithm based on Shamir's secret sharing[J]. Journal of communications, 2015, 36(3): 265-274. DOI: 10.11959/j.issn.1000-436x.2015083.
在经典的Shamir秘密共享方案中,秘密分发者把秘密s分为n个影子秘密并分发给持有者;其中任意不少于t个影子秘密均能恢复秘密s,少于t个影子秘密则得不到秘密s的任何信息。现实的秘密恢复过程中可能存在超过t个参与者的情形。因此,在Shamir的秘密共享方案基础上讨论此种情形下秘密共享问题,通过引入影子秘密的线性组合——拉格朗日因子来恢复秘密,并进一步将其扩展为一个多秘密共享方案。理论分析与仿真实验表明:改进算法在同样复杂度条件下既保证影子秘密的安全,又能阻止欺骗者得到秘密,提高了整体安全性。
In Shamir's secret sharing scheme
the dealer divided the secret s into n shadows and distributed it to share-holders in such a way that any t or more than t shadows can recover this secret
while fewer than t shadows cannot obtain any information about the secret s. During the actual secret recovery process
there exist other cases with more than t par-ticipants. The case of secret sharing problem was discussed based on Shamir's secret sharing scheme and reconstructs the secret by introducing a linear combination of shadows—Lagrange factor. Then
the improved algorithm of key distribu-tion and recovery was proposed and extended to a multi-secret sharing scheme. Theoretical analysis and simulation show that the improved scheme improves its security under the same conditions of complexity.
SHAMIR A . How to share a secret [J ] . Communications of the ACM , 1979 , 22 ( 11 ): 612 - 613 .
BLAKLEY G R . Safeguarding cryptographic keys [A ] . Managing Requirements Knowledge, International Workshop [C ] .IEEE Compute r Society, 1979 . 313 - 313 .
肖清华 . 秘密共享及相关应用研究 [D ] . 杭州:浙江大学 , 2005 .
XIAO Q H . Research on Secret Sharing and Its Related Applications [D ] . Hangzhou: Zhejiang University , 2005 .
CHOR B , GOLDWASSER S , MICALI S , et al . Verifiable secret shar-ing and achieving simultaneity in the presence of faults [A ] . 2013 IEEE 54th Annual Symposium on Foundations of Computer Science [C ] . 1985 . 383 - 395 .
KAYA K , SELÇUK A A . A verifiable secret sharing scheme based on the Chinese remainder theorem [A ] . Progress in Cryptology- IN-DOCRYPT 2008 [C ] . Springer Berlin Heidelberg , 2008 . 414 - 425 .
LU Q , XIONG Y , HUANG W , et al . A distributed ECC-DSS authenti-cation scheme based on CRT-VSS and trusted computing in MANET [A ] . Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International Conference [C ] . 2012 . 656 - 665 .
KAYA K , SELÇUK A A . A verifiable secret sharing scheme based on the chinese remainder theorem [A ] . Progress in Cryptology-INDOCRYPT 2008 [C ] . Springer Berlin Heidelberg , 2008 . 414 - 425 .
HARN L , FUYOU M , CHANG C C . Verifiable secret sharing based on the Chinese remainder theorem [J ] . Security and Communication Networks , 2014 , 7 ( 6 ): 950 - 957 .
ZHANG L , GUO F , LIU S , et al . A verifiable multi-secret sharing scheme based on LUC cryptosystem [A ] . Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on IEEE [C ] . 2011 . 2905 - 2908 .
HU C , LIAO X , CHENG X . Verifiable multi-secret sharing based on LFSR sequences [J ] . Theoretical Computer Science , 2012 , 445 : 52 - 62 .
LAIH C S , HARN L , LEE J Y , et al . Dynamic threshold scheme based on the definition of cross-product in an n-dimensional linear space [A ] . Advances in Cryptology—CRYPTO'89 Proceedings [C ] . Springer New York , 1990 . 286 - 298 .
李大伟 , 杨庚 . 基于单向散列链的可更新(t,n)门限秘密共享方案 [J ] . 通信学报 , 2010 , 31 ( 7 ): 128 - 135 .
LI D W , YANG G . Renewable (t, n) threshold secret sharing scheme based on one-way hash chain [J ] . Journal on Communications , 2010 , 31 ( 7 ): 128 - 135 .
LIN H Y , YEH Y S . Dynamic multi-secret sharing scheme [J ] . International Journal of Contemporary Mathematical Sciences , 2008 , 3 ( 1 ): 37 - 42 .
QU J , ZOU L , ZHANG J . A practical dynamic multi-secret sharing scheme [A ] . Information Theory and Information Security (ICITIS), 2010 IEEE International Conference [C ] . 2010 . 629 - 631 .
TADAYON M H , KHANMOHAMMADI H , ARABI S . An attack on a dynamic multi-secret sharing scheme and enhancing its security [A ] . Electrical Engineering (ICEE), 2013 21st Iranian Conference [C ] . 2013 . 1 - 5 .
贾秀芹 , 赖红 . 抗欺诈的动态(t, n)门限秘密共享方案 [J ] . 计算机工程 , 2011 , 37 ( 4 ): 152 - 154 .
JIA X Q , LAI H . Anti-cheat and dynamic (t, n) threshold secret sharing scheme [J ] . Computer Engineering , 2011 , 37 ( 4 ): 152 - 154 .
ESLAMI Z , RAD S K . A new verifiable multi-secret sharing scheme based on bilinear maps [J ] . Wireless Personal Communications , 2012 , 63 ( 2 ): 459 - 467 .
HERZBERG A , JARECKI S , KRAWCZYK H , et al . Proactive secret sharing or: How to cope with perpetual leakage [A ] . Advances in Cryptology—CRYPT0'95 [C ] .Springer Berlin Heidelberg, 1995 . 339 - 352 .
SUN H , ZHENG X , YU Y . A proactive secret sharing scheme based on elliptic curve cryptography Education Technology and Computer Science [A ] . First International Workshop on IEEE [C ] . 2009 . 666 - 669 .
WANG X . A novel adaptive proactive secret sharing without a trusted party [J ] . IACR Cryptology ePrint Archive , 2011 , 241 .
范畅 , 茹鹏 . 一种基于 ECC 的动态秘密共享方案 [J ] . 计算机仿真 , 2012 , 29 ( 12 ): 131 - 134 .
FAN C , RU P . Proactive secret sharing scheme based on ECC [J ] . Computer Simulation , 2012 , 29 ( 12 ): 131 - 134 .
NIKOV V , NIKOVA S . On a relation between verifiable secret sharing schemes and a class of error-correcting codes [A ] . Coding and Cryp-tography [C ] .Springer Berlin Heidelberg, 2006 . 275 - 290 .
OGATA W , KUROSAWA K , STINSON D R . Optimum secret sharing scheme secure against cheating [J ] . SIAM Journal on Discrete Mathematics , 2006 , 20 ( 1 ): 79 - 95 .
JHANWAR M P , SAFAVI-NAINI R . On the share efficiency of robust secret sharing and secret sharing with cheating detection [A ] . Progress in Cryptology-INDOCRYPT 2013 [C ] . Springer International Publishing , 2013 . 179 - 196 .
BENALOH J C . Secret sharing homomorphisms: Keeping shares of a secret secret [A ] . Advances in Cryptology—CRYPTO'86 [C ] .Springer Berlin Heidelberg, 1987 . 251 - 260 .
0
浏览量
4648
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构